
Developer Guide

PhoneX

Release 2.0 - Issue 0

Copyright© 1997-1999. Avaya Inc.
All rights reserved. Printed in USA.

Notice
Every effort was made to ensure that the information in this manual was complete and accurate at the time of
printing. However, information is subject to change.

Your Responsibility for Your System's Security
Toll fraud is the unauthorized use of your telecommunications system by an unauthorized party, for example,
persons other than your company's employees, agents, subcontractors, or persons working on your company's
behalf. Note that there may be a risk of toll fraud associated with your telecommunications system and, if toll fraud
occurs, it can result in substantial additional charges for your telecommunications services.

You and your system manager are responsible for the security of your system, such as programming and
configuring your equipment to prevent unauthorized use. The system manager is also responsible for reading all
installation, instruction, and system administration documents provided with this product in order to fully
understand the features that can introduce risk of toll fraud and the steps that can be taken to reduce that risk.
Avaya Inc. does not warrant that this product is immune from or will prevent unauthorized use of common-carrier
telecommunication services or facilities accessed through or connected to it. Avaya Inc. will not be responsible for
any charges that result from such unauthorized use.

Avaya Fraud Intervention
If you suspect that you are being victimized by toll fraud and you need technical support or assistance, call the
Technical Service Center Toll Fraud Intervention Hot-line at 1-800-643-2353.

Trademarks
 Avaya Computer Telephony is a registered trademark of Avaya Inc.
 Avaya CallMaster is a registered trademark of Avaya Inc.
 Definity is a registered trademark of Avaya Inc.
 MultiVantage is a registered trademark of Avaya Inc.
 INTEL and Pentium are registered trademarks of Intel Corporation.
 Microsoft, MS, MS-DOS, and Windows are registered trademarks of Microsoft Corp.

All other product names mentioned herein are the trademarks of their respective owners.

Avaya National Customer Care Center
Avaya provides a telephone number for you to use to report problems or to ask questions about your contact center.
The support telephone number is 1-800-242-2121. For technical support, customers outside the United States
should call their Avaya representative or distributor.

European Union Declaration of Conformity
Avaya Inc. Business Communications Systems declares that the equipment specified in this document conforms to
the referenced European Union (EU) Directives and Harmonized Standards listed below:

 EMC Directive 89/336/EEC
 Low Voltage Directive 73/23/EEC

The CE” mark affixed to the equipment means that it conforms to the above Directives.

Website
For more information on all Avaya Contact Center Express products, refer to the company website
(http://www.AvayaContactCenterExpress.com).

Software License Agreement

Definitions

Term Definition
Avaya Avaya Inc.

You, your or licensee The person or business entity who purchased this license to use this client
software or for whom such license was purchased.

Client software A software application that operates on a computer system.

Documentation The manual and any other printed material provided by Avaya for the client
software.

License The license purchased and granted pursuant to this agreement.

License and Protection
License Grant. Avaya grants to you, subject to the following terms and conditions, a nonexclusive, nontransferable
right to use the client software on one or more single-user devices. The maximum simultaneous users of the client
software being limited to the number of single-user licenses purchased and owned by you. Avaya reserves all
rights not expressly granted to you.

Protection of Software. You agree to take all reasonable steps to protect the client software and documentation from
unauthorized copy or use. The client software source code represents and embodies trade secrets of Avaya and/or
its licensors. The source code and embodied trade secrets are not licensed to you and any modification, addition, or
deletion is strictly prohibited. You agree not to disassemble, decompile, or otherwise reverse engineer the client
software in order to discover the source code and/or the trade secrets contained in the source code or for any other
reason. To the extent that the client software is located in a Member State of the European Community and you
need information about the client software in order to achieve interoperability of an independently created
software program with the client software, you shall first request such information from Avaya. Unless Avaya
refuses to make such information available, you shall not take any steps, such as reverse assembly or reverse
compilation, to derive a source code equivalent to the client software. Avaya may charge you a reasonable fee for
the provision of such information.

Copies. You may make multiple copies of the client software for your own use with Avaya contact center agent
digital voice terminals, provided you do not violate the License Grant in paragraph 1, and you do not receive any
payment, commercial benefit, or other consideration for reproduction or use. You may not copy documentation
unless it carries a statement that copying is permitted. All proprietary rights notices must be faithfully reproduced
and included on all copies.

Ownership. Ownership of, and title to, the client software and documentation (including any adaptations or copies)
remains with Avaya and/or its licensors.

Restrictions. You agree not to rent, lease, sublicense, modify or time share the client software or documentation.

Termination. This agreement shall automatically terminate if you breach any of the terms or conditions of this
agreement. You agree to destroy the original and all copies of the client software and documentation, or to return
them to Avaya, upon termination of this license.

Limited Warranty and Limited Liability
Compatibility. The client software is only compatible with certain computers and operating systems. The software
is not warranted for noncompatible systems.

Software. Avaya warrants that if the client software fails to substantially conform to the specifications in the
documentation and if the client software is returned to the place from which it was purchased within one (1) year
from the date purchased, then Avaya will either replace the client software or offer to refund the license fee to you
upon return of all copies of the client software and documentation to Avaya. In the event of a refund, the license
shall terminate.

Disclaimer of Warranties. Avaya makes no warranty, representation or promise not expressly set forth in this
agreement. Avaya disclaims and excludes any and all implied warranties of merchantability or fitness for a
particular purpose. Avaya does not warrant that the client software or documentation will satisfy your
requirements or that the client software or documentation are without defect or error or that the operation of the
software will be uninterrupted. Some states or countries do not allow the exclusion of implied warranties or
limitations on how long an implied warranty lasts, so the above limitation may not apply to you. This warranty
gives you specific legal rights which vary from state to state.

Exclusive Remedy. Except for bodily injury caused by Avaya's negligence, Avaya's entire liability arising from or
relating to this agreement or the client software or documentation and your exclusive remedy is limited to direct
damages in an amount not to exceed $10,000. Avaya shall not in any case be liable for any special incidental,
consequential, indirect or punitive damages even if Avaya has been advised of the possibility of such damages.
Avaya is not responsible for lost profits or revenue, loss of use of the client software, loss of data, costs of
recreating lost data, the cost of any substitute equipment or program, or claims by any party other than you. Some
states or countries do not allow the exclusion or limitation of incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

General Conditions
Governing Law. This agreement shall be governed by, and interpreted in accordance with, the substantive laws of
the State of New Jersey of the United States of America.

Entire Agreement. This agreement sets forth the entire understanding and agreement between you and Avaya and
may be amended only in a writing or writings signed by you and Avaya. No vendor, distributor, dealer, retailer,
sales person or other person is authorized to modify this agreement or to make any warranty, representation or
promise which is different than, or in addition to, the representations or promises of this agreement about the
software.

Export. Licensee hereby agrees that it will not knowingly, directly or indirectly, without prior written consent, if
required, of the Office of Export Licensing of the U.S. Department of Commerce, Washington D.C. 20230, export
or transmit any of the Products to any group Q, S, W, Y, or Z country specified in the Export Administration
Regulations issued by the U.S. Department of Commerce or to any country which such transmission is restricted
by applicable regulations or statues.

U.S. Government Restricted Rights. Use, duplication, or disclosure by the United States Government is subject to
restrictions as set forth in FAR 52.227-14 (June 1987) Alternate III (g)(3) (June 1987), FAR 52.227-19 (June
1987), or DFARS 52.227-7013 (c)(1)(ii) (June 1988), as applicable Contractor/Manufacturer is Avaya Inc. 11900
North Pecos Street, Westminster, Colorado 80234.

Assignment. Avaya may without your consent or notice to you, assign this agreement to an entity to which it
transfers ownership of the client software. Upon the effective date of such assignment, you agree that Avaya shall
be released and discharged from all obligations and liabilities under this agreement.

 i

Contents

Software License Agreement 3

Preface 6
Document Conventions...7
Related Documents ...7
Knowledge Base ...7
On-Line Help ..7

Introduction 8
What is PhoneX? ..9

The Class Structures 10
Introduction ..11
CallClass ...12
MemberList Class...17
AgentClass..19
DeviceClass ..21
Error Class ..24
LAIInformation...25
OCIInformation ..26
StringCollection..27
RuntimeLicenseInformation ...27
ActiveCallClasses Class ...28
OldCallClasses Class ..30
AgentClasses Class ...32
DeviceClasses Class ...34
TServers Class ..36
Use of Class Information ..37

OCX Class Control Events 39
ClassCallModified ..40
ClassDeviceModified..40
ClassAgentModified ...41

OCX Link Control Properties 43
TServerLinkName/TServerLinkNameSecondary...44
TServerUserName/TServerUserNameSecondary...44
TServerUserPassword/TServerUserPasswordSecondary ...44
PhoneXEnabled ..45
ProvideEventsForLinkRecovery...45
AutoFallBackToPrimaryServer ..46
AutoFallBackToPrimaryServerTime..46
ActiveTServerLink ...46

 Contents ii

OCX Link Control Methods 48
TSListServers ...49
TSShutDown ..49
TSMonitorStation ...50
TSMonitorSkill ...52
TSMonitorVDN..53
TSGetAuthorizationType..54

OCX Link Control Events 56
TSServerAvailable..57
TSMonitorStationReturn ..57
TSMonitorSkillReturn ..58
TSMonitorVDNReturn ...59
TSMonitorStopped ...60
TSAuthorizationType ...61
TSLoggedIn ..61
TSLoggedOut ...62

Call Control Methods 63
CallAnswer ...64
CallConference ...65
CallDial...68
CallDialDirectAgent ...70
CallDialSupervisorAssist..72
CallDivert ...74
CallHold..75
CallJoin...76
CallListenHold..78
CallListenUnHold...79
CallPartyDrop ...81
CallRelease ...82
CallSendDTMF...84
CallTransfer ..85
CallUnHold...88
DeviceMute ..89
DeviceUnMute..90

Call Control Events 92
CallActive...93
CallAlerting ..93
CallAnswered ...94
CallDelivered..96
CallFailed..96
CallDiverted..97
CallHeld..97
CallListenHeld..98
CallListenUnHeld ...99
CallModified...99
CallNetworkReached..101
CallOriginated...101
CallPartyDropped ...102
CallPhoneActive ...104
CallPhoneNotActive ...104

 Contents iii

CallQueued ...105
CallReleased ...106
CallUnHeld...106
DeviceMuted...107
DeviceUnMuted..107

Set Feature Methods 109
SetForward..110
SetSendAllCalls..110
SetBillingRate...111
SetMessageWaiting ..112

Set Feature Events 114
SetForwardReturn...115
SetSendAllCallsReturn ...115
SetBillingRateReturn ..116
SetMessageWaitingReturn..116

Agent Methods 118
AgentLogin ...119
AgentLogout ...120
AgentSetState ...121

Agent Events 123
AgentLoggedIn ...124
AgentLoggedOut ..125
AgentStateReturn..125

Query Methods 127
QueryACDSplit ..128
QueryAgentLogin ...128
QueryAgentState...129
QueryCallClassifier ..130
QueryDeviceInfo ..131
QuerySendAllCalls ...131
QueryForward...132
QueryMessageWaiting..133
QueryTimeOfDay ...133
QueryTrunkGroup ..134
QueryStationStatus ...135
QueryUCID ..136

Query Events 137
QueryACDSplitReturn..138
QueryAgentLoginReturn ..138
QueryAgentStateReturn..139
QueryCallClassifierReturn..140
QueryDeviceInfoReturn..140
QueryTimeOfDayReturn ..141
QueryTrunkGroupReturn..142
QueryStationStatusReturn ..143

 Contents iv

QuerySendAllCallsReturn ..144
QueryForwardingReturn...144
QueryMessageWaitingReturn...145
QueryUCIDReturn..146

Snapshot Methods 147
SnapshotCall ...148
SnapshotDevice ..149

Snapshot Events 150
SnapshotCallReturn ..151
SnapShotDeviceReturn...151

Routing Methods 153
RouteRegister ...154
RouteSelect ...154
RouteEnd ..155
RouteRegisterCancel ..156

Routing Events 157
RouteEnded ..158
RouteRegisterAbort ..158
RouteRegistered..159
RouteRegisterCanceled...159
RouteRequestService ..160
RouteUsed ..160

Language Properties 162
Language ..163

Language Methods 164
GetFontObject...165
GetStringValue ...165
GetStringValueEx...166

Miscellaneous Methods 168
NumberUnformatNumber...169
NumberCheckDialableNumber...170
NumberGetDialableCharacters ...171
NumberSetDialableCharacters..171
VersionGetPhoneXVersion ..172
AboutBox..173

Miscellaneous Events 174
TSError ...175

Control Properties 176

 Contents v

ApplicationName..177
AutoMonitorSplitOnAgentLogin..177
CLIRestrictedReplacementString ...177
DisableSpecialDialSequence ..178
HonorDefinityCLIRestriction...178
hWnd ..178
Index ...178
IsConnected ..179
MaximumCallAppearances ..179
MaxMonitoredDNs...179
MaxOldCallListSize ...179
MinimumCallAppearances ...180
Name...180
Object..180
Parent ..180
ReplaceUUIandCDwithOCIInfo...181
Tag..181
TServers..181
TraceActivity ..183
PollingSpeedAgentInfo...183
PollingSpeedFeatures ...183
PrivateVersion ..183
QueryACDStatus ..184
StripCLIRestrictionIndicator ..184
TrunkIDReplacementString..184
UpdateAgentStateOnCallClear ...185

Appendix A - Special Dial Characters 186
Alphanumeric Characters ...187
Post-Dial DTMF ...188
User-to-User Information ...189

Appendix B - PhoneX Dial Control 190
Version Numbers ..191
PhoneX Status Dump..192
PhoneX Tracing ..193
Disable Special Dial Sequence ...194

Index 195

 6

C H A P T E R 1

Preface

This chapter provides information that will help you use this document.

In This Chapter
Document Conventions .. 7
Related Documents... 7
Knowledge Base... 7
On-Line Help.. 7

 Preface 7

Document Conventions
Convention Description

CallDial Italicized text indicates a reference to a method, event,
control property parameter, class variable, return value or
enumeration.

Sample code Courier font indicates sample program code.

Related Documents
This document should be used in conjunction with the Definity ECS
Programmer’s Guide for CentreVu CTI, which provides more extensive
information on the API calls used.

The Definity Enterprise Communications Server Release 9 Administrator’s
Guide, Vols 1,2 & 3 (555-233-506) is helpful when administering the Definity
Enterprise Communications Server.

For this document and more documentation on the Definity Enterprise
Communications Server, refer to Avaya's Support Center website (see Product
Documentation - http://support.avaya.com.).

Knowledge Base
For information on any errors and updates relating to this document, visit the
Avaya Contact Center Express Knowledge Base via the website
(http://www.AvayaContactCenterExpress.com).

On-Line Help
To display on-line help on all the properties, methods and events exposed by this
control, select the control after you have placed it on a form and press the [F1] key.

 8

C H A P T E R 2

Introduction

This chapter introduces PhoneX and illustrates how it interfaces with a user
application.

In This Chapter
What is PhoneX? .. 9

 Introduction 9

What is PhoneX?
PhoneX is an OCX control that performs general telephony control. It exists as a
wrapper control around the Avaya Computer Telephony middleware, offering an
abstract level of call, device, agent and scripting control for common desktop
applications and development environments.

PhoneX presents an extensive array of methods, events and properties to a
container application. It has no user interface and relies entirely on the host
application to provide this.

Network Transport

PhoneX COM Interface

Avaya Computer
Telephony API

Visual Interface

PhoneX passes class-based
information to the user application

User Application (container)

Desktop Environment:
Windows 98/NT4/2000/XP

Sample Code
Sample Visual Basic code is included in this document to illustrate the use of the
PhoneX API interface. The code should be easily transported to applications
written in Microsoft Visual Basic (version 5 or greater), VBA, HTML (using
VBScript) and others.

 10

C H A P T E R 3

The Class Structures

This chapter includes information on the class structures used within PhoneX.

In This Chapter
Introduction .. 11
CallClass... 12
MemberList Class... 17
AgentClass ... 19
DeviceClass .. 21
Error Class.. 24
LAIInformation .. 25
OCIInformation .. 26
StringCollection.. 27
RuntimeLicenseInformation... 27
ActiveCallClasses Class ... 28
OldCallClasses Class.. 30
AgentClasses Class... 32
DeviceClasses Class ... 34
TServers Class.. 36
Use of Class Information.. 37

 The Class Structures 11

Introduction
General parameter passing is based around class objects with the addition of
specific parameters as the method or event requires.

The object model allows PhoneX to hold copies of all class objects used in call,
device and agent methods.

There are four primary classes (Call, Device, Agent and Error) and five collection
classes (ActiveCallClasses, OldCallClasses, AgentClasses, DevicesClasses and
TServers).

 The Class Structures 12

CallClass
The CallClass contains all information about an individual call as seen from the
perspective of an individual device. This means that if PhoneX is used to monitor
two devices, Party A and Party B, and Party A and Party B are involved on the
same call, PhoneX will hold two call classes. One class views the call from Party
A’s perspective with Party A as the primary device number, and one class views
the call from Party B’s perspective with Party B as the primary device number.

CallClass Parameters

Class Parameter Type Default Value
BillRate

BillType Long

CallAppearance Long, Read/write Default: 0
(Unassigned)

The CallAppearance value that has been assigned to this call. For a specific device,
the CallAppearance value is unique for all currently active calls.

CallAppearance values number from 1 up to the value set for the
MaxCallAppearances property in the individual device class.

If an incoming call is received by PhoneX, the next free CallAppearance number is
assigned before the CallAlerting event is fired. If the MaxCallAppearences has
been exceeded, the CallAppearance parameter will be set to -1.

If a dial request (CallDial) is received with a CallAppearance value of 0, PhoneX
automatically assigns the next free call appearance. If the received
CallAppearance is not 0, PhoneX will not alter the value.

You can use this value to associate a call appearance indicator (Line Key) on your
client application with a call class.

Note: This value is not necessarily the same as the actual call appearance on the
physical station where the call appears.

CallDirection Long, Read-only Default: 0

This indicates whether the call was incoming to the monitored device or outgoing
from the monitored device. For call direction values, refer to the enumeration
enCallDirection in the PhoneX Enumerations Guide.

CalledDN String Default: Empty

The number dialled by the call. If this is an outbound call from the monitored
device, this field will contain the destination number.

CalledName String, Read/write Default: Empty

The name of the person being called. This name is available only if the called party
DN is also monitored by PhoneX. If the name is not available, this property
contains the calledDN.

CallEndCause Long, Read-only Default: -1

 The Class Structures 13

Reason why the call ended. For call end cause values, refer to the enumeration
enEventCause in the PhoneX Enumerations Guide.

CallerDigits String, Read-only Default: Empty

This contains any digits collected using the Definity ECS call prompting feature.
For this feature to work, PhoneX must be monitoring the appropriate VDN devices.

CallerDN String, Read/write Default: Empty

The DN of the originator of the call. If the call is an outbound call from the
monitored device, this field will contain the DN of the monitored device. If the call
is inbound and the caller’s number is not restricted, the caller’s number will be
presented in this field.

If the caller’s number is marked as restricted and the PhoneX property to honor
CLI restriction (HonorDefinityCLIRestriction) is True, this field will be replaced
with the text taken from the CLIRestrictedReplacementString property.

See also RestrictedCallerDN property.

CallerName String Default: Empty

If the caller to the monitored device is from a device that is also monitored by
PhoneX and PhoneX has collected a device name from the Definity ECS, this name
will be placed in this field. If there is no device name or the device is not
monitored, this field will be blank.

CallFlag1 Variant, Read/write Default: Empty

 A free-form field that can be used by the host application. These fields are not
modified by PhoneX.

CallFlag2 Variant, Read/write Default: Empty

A free-form field that can be used by the host application. These fields are not
modified by PhoneX.

CallFlag3 Variant, Read/write Default: Empty

A free-form field that can be used by the host application. These fields are not
modified by PhoneX.

CallFlag4 Variant, Read / Write Default: Empty

A free-form field that can be used by the host application. These fields are not
modified by PhoneX.

CallID Long, Read-only Default: 0

The current Definity ECS-assigned call identifier for the call.

CallIdentifier String, Read-only Default: Empty

A string that uniquely identifies the call class within PhoneX. The call identifier
takes the form of xxxx.yyyy.zzzz where:

xxxx is the primary monitored DN responsible for this call class.

yyyy is the current Definity CallID.

zzzz is a unique number generated by PhoneX .This number starts at 2000 and
increments for each new call received to PhoneX.

CallModifiedMethod Long, Read Only Default: 0

This indicates the reason why the call class has changed when the CallModified or
ClassCallModified events are received by the host application. For reason values,
refer to the enumeration enModifyCause in the PhoneX Enumerations Guide.

CallStartCause Long, Read-only Default: -1

 The Class Structures 14

Reason why the call started. For call start cause values, refer to the enumeration
enEventCause in the PhoneX Enumerations Guide.

CallState Long, Read-only Default: 0

The current state of the call. For call state values, refer to the enumeration
enCallState in the PhoneX Enumerations Guide.

CallStatePrevious Long, Read-only Default: 0

The state the call was previously in. For call state values, refer to the enumeration
enCallState in the PhoneX Enumerations Guide.

CallTimeAnswered String, Read-only Default: Empty

The time retrieved from the PC when the call associated with this call class is
answered. If the call is not answered, this string will remain empty.

CallTimeEnd String, Read-only Default: Empty

The time retrieved from the PC when the call associated with this call class clears.

CallTimeStart String, Read-only Default: Empty

The time retrieved from the PC when the call class was created by PhoneX. If
PhoneX did not create the call class, PhoneX will set this field when it first receives
the class.

ConferencePendingState Long, Read-only Default: 0

This identifies if this call class is the primary device, that is, if it is the conferencing
party or the secondary device the call is to be conferenced to. This enables
alternation of call classes without losing the conference (alternating between two
call appearances, each with a call class respectively).

For conference pending state values, refer to the enumeration
enConferencePendingState in the PhoneX Enumerations Guide.

ConferencePendingType Long, Read-only Default: 0

This identifies the type of conference being performed and whether this call was
part of the conference in progress. For conference type values, refer to the
enumeration enConferenceType in the PhoneX Enumerations Guide.

DistributingDevice String

Specifies the ACD or VDN device that distributed the call to the station.

DN String, Read-only Default: Empty

The currently monitored device that generated this call class.

FriendlyName String, Read/write Default: Empty

String field provided for container application usage. PhoneX does not use this
field. If the call class is created with PhoneX, this field will default to an empty
string. This member stores a string that may be displayed to the application user.

LAIInfo

Look ahead information provided by the Definity ECS when calls are interflowed
between switches.

MemberList MemberListClass,
Read-only

Default: Default
MemberList Class

The MemberList is a property of type MemberListClass that contains information
specific to the parties of a call. This includes the device numbers and their current
talk and connection state.

Refer to Base Class Definition: MemberList Class.

 The Class Structures 15

NewCallClass CallClass, Read-only Default: NULL
(Nothing)

The call class that this call class became. This field allows the call history to be
viewed, forming a call chain.

Forward-looking call class link.

The validity of this information depends on the size of the call history list. Once the
list size is reached, old call classes are automatically deleted. References to call
classes that have been deleted are automatically deleted.

NewDN String, Read/write Default: Empty

This field will contain the new destination DN if the call is to be routed.

OCIInfo

Original call information.

OldCallClass CallClass, Read-only Default: NULL
(Nothing)

The call class that was transformed into this call class by a call transfer or a call
conference. This field allows the call history to be viewed, forming a call chain.

Backward-looking call class link.

The validity of this information depends on the size of the call history list. Once the
list size is reached, old call classes are automatically deleted. References to call
classes that have been deleted are automatically deleted. If a call class has been
deleted from the Old Call List, this parameter will be set to NULL (Nothing).

OtherDN String, Read/write Default: Empty

Reserved. Used by AgentX to indicate the ‘other’ party (ie. the person you are
connected to) in a two-party call. May be either the CallerDN or CalledDN
depending on the CallDirection property.

Priority Boolean, Read/write Default: False

This field is used for outbound, on-switch (station-to-station) calls to invoke the
Definity ECS priority feature.

Reason

Reason information. Event specific. For reason values, refer to the enumeration
enATTReason in the PhoneX Enumerations Guide.

RestrictedCallerDN String, Read/write Default: Empty

This field will contain the same information as the CallerDN field.

Even if the caller’s number is marked as restricted and the PhoneX property to
honor CLI restriction (HonorDefinityCLIRestriction) is set to True, the original
value of the caller DN will display. It will not be replaced with the text taken from
the CLIRestrictedReplacementString property.

ServiceObserved Boolean, Read-only Default: False

Service Observe property is True when the call is being service observed by
another party. The observing party must have entered the call by dialing the
Definity ECS service observe feature code.

If this call is the service observer call, this property will be False.

Note: This property is only valid for StreamVersion 6.

 ServiceObserveDevice String, Read-only Default: Empty

 The Class Structures 16

The extension number of the party service observing this call. This party must have
entered the call by dialing the Definity ECS service observe feature code. If the call
is not being service observed, this property will be empty.

Note: This property is only valid for StreamVersion 6.

Split

Specifies the ACD split extension to which the call has been delivered.

TransferPendingState Long, Read-only Default: 0

This identifies if this call class is the primary device, that is, if it is the transferring
party or the secondary device the call is transferred to. This enables alternation of
call classes without losing the transfer (alternating between two call appearances,
each with a call class respectively).

For transfer pending state values, refer to the enumeration enTransferPendingState
in the PhoneX Enumerations Guide.

TransferPendingType Long, Read-only Default: 0

This identifies the type of transfer being performed and whether this call was part
of the transfer in progress. For transfer type values, refer to the enumeration
enTransferType in the PhoneX Enumerations Guide.

TrunkGroup String, Read-only Default: Empty

The Definity ECS trunk group the call was received on. This field requires the
Avaya Computer Telephony StreamVersion with the Definity ECS to be 5 or
higher. This field will not be present if caller information is present.

TrunkGroupMember String, Read-only Default: Empty

The Definity ECS trunk group member the call was received on. This field requires
the Avaya Computer Telephony StreamVersion with the Definity ECS to be 5 or
higher. This field will not be present if caller information is present.

UCID String, Read-only Default: Empty

The Universal Call Identifier is a parameter available with version 6 Definity ECS
systems. It is a number unique to the call. This number is used in Avaya Call
Management systems to uniquely identify the call. If the Definity ECS does not
have this feature enabled, the contents will be empty.

UUI String, Read/write Default: Empty

For an inbound call, this field will contain any user-to-user information received
with the call. If the call is outbound from the monitored device, the user-to-user
information to be sent with the call will be in this field. (Making an outbound call
using the CallDial method will take the information from this field to send with the
call.)

The maximum length of user-to-user information currently accepted by the
Definity ECS is 96 characters (assuming you have a Release 8 or better switch with
Avaya Computer Telephony Release 3.30 Version 2.0 or higher on the Telephony
Server; otherwise 32 characters for a switch prior to Release 8). A call class
received with a UUI field that exceeds this will be rejected.

 The Class Structures 17

MemberList Class
The MemberList Class is a sub-class of CallClass. It contains a complete list of all
the parties on the current call, their connection state and their talk state. The
MemberList Class, which is found as a field in the CallClass, supports up to six
parties on the call and gives a running count of the current number of parties.

MemberList Class Parameters

Class Parameter Type Default Value
ConnectionStateDN1 long, Read-only Default: 0

The connection state of DN1 on this call. For connection state values, refer to the
enumeration enCallState in the PhoneX Enumerations Guide.

ConnectionStateDN2 Long, Read-only Default: 0

The connection state of DN2 on this call. For connection state values, refer to the
enumeration enCallState in the PhoneX Enumerations Guide.

ConnectionStateDN3 Long, Read-only Default: 0

The connection state of DN3 on this call. For connection state values, refer to the
enumeration enCallState in the PhoneX Enumerations Guide.

ConnectionStateDN4 Long, Read-only Default: 0

The connection state of DN4 on this call. For connection state values, refer to the
enumeration enCallState in the PhoneX Enumerations Guide.

ConnectionStateDN5 Long, Read-only Default: 0

The connection state of DN5 on this call. For connection state values, refer to the
enumeration enCallState in the PhoneX Enumerations Guide.

ConnectionStateDN6 Long, Read-only Default: 0

The connection state of DN6 on this call. For connection state values, refer to the
enumeration enCallState in the PhoneX Enumerations Guide.

CurrentNumberOfMembers Long, Read-only Default: 0

The count of the current number of connection on this call.

DN1 String, Read-only Default: Empty

The identifier of the first party on the call.

DN2 String, Read-only Default: Empty

The identifier of the second party on the call.

DN3 String, Read-only Default: Empty

The identifier of the third party on the call.

DN4 String, Read-only Default: Empty

The identifier of the fourth party on the call.

DN5 String, Read-only Default: Empty

The identifier of the fifth party on the call.

DN6 String, Read-only Default: Empty

 The Class Structures 18

The identifier of the sixth party on the call.

TalkStateDN1 Long, Read-only Default: 0

The talk state of DN1 on this call. For talk state values, refer to the enumeration
enTalkState in the PhoneX Enumerations Guide.

TalkStateDN2 Long, Read-only Default: 0

The talk state of DN2 on this call. For talk state values, refer to the enumeration
enTalkState in the PhoneX Enumerations Guide.

TalkStateDN3 long, Read-only Default: 0

The talk state of DN3 on this call. For talk state values, refer to the enumeration
enTalkState in the PhoneX Enumerations Guide.

TalkStateDN4 long, Read-only Default: 0

The talk state of DN4 on this call. For talk state values, refer to the enumeration
enTalkState in the PhoneX Enumerations Guide.

TalkStateDN5 long, Read-only Default: 0

The talk state of DN5 on this call. For talk state values, refer to the enumeration
enTalkState in the PhoneX Enumerations Guide.

TalkStateDN6 long, Read-only Default: 0

The talk state of DN6 on this call. For talk state values, refer to the enumeration
enTalkState in the PhoneX Enumerations Guide.

 The Class Structures 19

AgentClass
The AgentClass contains detailed information about the agent session. This
includes the agent ID and split/skill information.

When used in the EAS environment, PhoneX holds one AgentClass for a specific
device. In the Non-EAS environment, PhoneX holds an AgentClass for each split
the container application needs to log a device in for.

AgentClass validates the following parameters: AgentPassword, AgentID,
SplitSkill, AgentState, AgentMode, WorkMode and ReasonCode. Any invalid
input will not be accepted.

AgentClass Parameters

Class Parameter Type Default Value
AgentDN String, Read/write Default: Empty

The station number the agent is logging in with.

AgentFlag1 String, Read/write Default: Empty

A free-form string field that can be used by the host application. This field is not
modified by PhoneX.

AgentFlag2 String, Read/write Default: Empty

A free-form string field that can be used by the host application. This field is not
modified by PhoneX.

AgentFlag3 String, Read/write Default: Empty

A free-form string field that can be used by the host application. This field is not
modified by PhoneX.

AgentFlag4 String, Read/write Default: Empty

A free-form string field that can be used by the host application. This field is not
modified by PhoneX.

AgentID String, Read/write Default: Empty

The ID code of the agent trying to log in.

AgentIdentifier String, Read-only Default: Empty

A string that uniquely identifies the agent class within PhoneX. The agent
identifier takes the form of xxxx.yyyy.zzzz where:

xxxx is the monitored DN responsible for this agent class.

yyyy is the agent ID for EAS, otherwise xxxx for Non-EAS. Reserved.

zzzz is the split extension number for Non-EAS, otherwise blank for EAS.

The AgentIdentifier field is a method inside the agent class that returns the current
value. As a method, the values contained within the agent class can not be
modified.

AgentMode Long, Read/write Default: -1

The agent mode for the agent ID being monitored. For agent mode values, refer to
the enumeration enAgentMode in the PhoneX Enumerations Guide.

 The Class Structures 20

AgentPassword String, Read/write Default: Empty

The password of the agent ID trying to log in. If a password is not required, this
parameter should be left blank.

AgentState Long, Read/write Default: -1

The agent state for the agent ID being monitored. For agent state values, refer to the
enumeration enAgentState in the PhoneX Enumerations Guide.

AllowPendingStateChange Boolean, Read/write Default: True

By default, this will allow state changes of the agent mode and work mode while
the user is still active on a call. The state changes will be placed on a pending state
until such a time when the physical device is made idle. When the physical device
is idle, the state will change to that as specified by the pending states.

FriendlyName String, Read/write Default: Empty

A free-form string field that can be used by the host application. This field is not
modified by PhoneX.

PendingReasonCode EnReasonCode,
Read/write

Default: 0

This will hold the reason code to use when the state changes when the physical
device is idle.

PendingWorkMode EnAgentWorkMode,
Read/write

Default: -1

This will hold the new work mode to use when the state changes when the physical
device is idle.

ReasonCode Long, Read/write Default: 0

The reason code used to support the change of state. This parameter is only used in
a change of state from 'anything' to Auxiliary mode or an attempt to log out. The
values must be between 0 and 9.

SplitSkill String, Read/write Default: Empty

The split skill number (hunt group DN) the agent will be logging in to. If the
system is operating in EAS mode, this field is left blank.

TalkState

Indicates if the agent is idle (ready to accept calls) or busy (occupied with serving a
call).

WorkMode Long, Read/write Default: 3

The work mode for the agent ID being monitored. For agent work mode values,
refer to the enumeration enAgentWorkMode in the PhoneX Enumerations Guide.

 The Class Structures 21

DeviceClass
The DeviceClass contains all the information about an individual device as seen
from the perspective of an individual device. This means that PhoneX can contain
more than one device to be monitored. The available types of device that may be
monitored are station, VDN and split/skills.

DeviceClass Parameters

Class Parameter Type Default Value
ActiveCallClasses

A collection of calls currently at this device.

AgentClasses

A collection of agent classes for this device.

CallCountCurrent Long, Read-only Default: 0

A counter of the number of calls currently active on the device. This includes calls
alerting at the device and those on hold at the device.

CallCountTotal Long, Read-only Default: 0

A count of the total number of calls that have been (or are) active at the device.
This includes inbound calls that were not answered or went to cover.

ClipBoardAutoPasteFormat String

The format for information to be pasted into the clipboard when a new call arrives
for this device. If the string is blank, no data will be pasted. Both literals and place
holders can be used. U=UUI ?=CLI/ANI D=Collected Digits N=Caller Name

DeviceDN String, Read/write Default: Empty

The number of the device being monitored by PhoneX.

DeviceFlag1 String, Read/write Default: Empty

A free-form string field that can be used by the host application. This field is not
modified by PhoneX.

DeviceFlag2 String, Read/write Default: Empty

A free-form string field that can be used by the host application. This field is not
modified by PhoneX.

DeviceFlag3 String, Read/write Default: Empty

A free-form string field that can be used by the host application. This field is not
modified by PhoneX.

DeviceFlag4 String, Read/write Default: Empty

A free-form string field that can be used by the host application. This field is not
modified by PhoneX.

DeviceIdentifier String, Read-only Default: Empty

 The Class Structures 22

A string that uniquely identifies the device class within PhoneX. The
DeviceIdentifier takes the form of xxxx.yyyy where:

xxxx primary or secondary monitored DN responsible for this device class

yyyy is a unique number generated by PhoneX that starts at 2000. It increments for
each new device under monitor by PhoneX.

DeviceState Long, Read-only Default: 0

The current state of the device. For device state values, refer to the enumeration
enPrimaryDNState in the PhoneX Enumerations Guide.

DeviceStatePrevious Long, Read-only Default: 0

The previous state of the device. For device state values, refer to the enumeration
enPrimaryDNState in the PhoneX Enumerations Guide.

DeviceType Long, Read-only Default: -1

The type of device this class is controlling. For device type values, refer to the
enumeration enDeviceType in the PhoneX Enumerations Guide.

FriendlyName String, Read/write Default: Empty

A free-form string field that can be used by the host application. This field is not
modified by PhoneX.

MaxCallAppearances Long, Read/write Default: 3

This indicates the number of active calls that are expected for the device in
question. When a call alerts to a device, it is assigned the next free call appearance.
If the next call appearance exceeds the MaxCallAppearance property, the call class
call appearance is set to -1.

MonitorType Long, Read/write Default: 0

The type of monitor this device is set for. For monitor type values, refer to the
enumeration enMonitorType in the PhoneX Enumerations Guide.

MWTApplication Long, Read-only Default: 0

This indicates the applications that have set the Message Waiting feature. For
MWT application values, refer to the enumeration enMWTApplication in the
PhoneX Enumerations Guide.

NextCallAppearance Long, Read-only Default: 0

The next call appearance that is linked to the current call appearance.

Note: This may not match the call appearance selected by the physical device.

NotifyType Long, Read-only Default: 0

Reserved. Not used.

OldCallClasses

A collection of old calls for this device.

QueryFWDStatus Boolean, Read/write Default: False

If set to True, PhoneX will automatically poll the Definity ECS to determine the
status of the Call Forward feature.

QueryMWTStatus Boolean, Read/write Default: False

If set to True, PhoneX will automatically poll the Definity ECS to determine the
status of the Message Waiting feature.

QuerySACStatus Boolean, Read/write Default: False

 The Class Structures 23

If set to True, PhoneX will automatically poll the Definity ECS to determine the
status of the Send All Calls feature.

SelectedCallAppearance Long, Read-only Default: 0

The call appearance currently selected by the application.

Note: This may not match the call appearance selected by the physical device.

StatusFWD String, Read/write Default: Empty

The current status of the device Call Forward parameter. This field is only valid if
the device is a station. If the device being monitored has the Call Forward feature
activated, this string will contain the forward destination. When empty (zero
length) the device is not forwarded.

StatusMWT Boolean, Read/write Default: False

The current status of the device Message Waiting parameter. This field is only
valid if the device is a station. When set, the device has a message set.

StatusSAC Boolean, Read/write Default: False

The current status of the Send All Calls parameter. This field is only valid if the
device is a station. When set, the device has the Send All Calls feature activated.

SwitchName String, Read/write Default: Empty

The name associated with the device retrieved from the Definity ECS. For this to
be valid, the link to the Telephony Server must be StreamVersion 5 or higher.

 The Class Structures 24

Error Class
The ErrorClass contains detailed information about the error that has occurred.
This includes the error code, type, level information etc.

PhoneX will issue a TSError event whenever a failure has occurred in PhoneX.

ErrorClass Parameters

Class Parameter Type Default Value
DisplayError Long, Read/write Default: 0

Reserved. Not used.

ErrorCode Long, Read/write Default: 0

The error value that is returned.

ErrorContext Long, Read/write Default: 0

Reserved. Not used.

ErrorDevice String, Read/write Default: Empty

The device that was monitored and that caused the error to happen.

ErrorDeviceType Long, Read/write Default: 0

Reserved. Not used.

ErrorLevel EnErrorLevel,
Read/write

Default: 0

This specifies the severity of the error.

ErrorType EnErrorType,
Read/write

Default: 0

This specifies the type of error and enables the user to investigate exactly how the
error occurs.

InvokeID Long, Read/write Default: 0

The invokeID that caused the error to occur.

ResourceTagError Long, Read/write Default: 0

The language-dependant error information associated with the ErrorCode.

ResourceTagResolution Long, Read/write Default: 0

The language-dependant resolution for the ErrorCode that occurred.

 The Class Structures 25

LAIInformation
For information on LAIInformation, refer to the Programmer's Guide for Definity
Enterprise Communications Server (Defprog.pdf) on the Avaya Computer
Telephony CD-ROM.

 The Class Structures 26

OCIInformation
For information on OCIInformation, refer to the Programmer's Guide for Definity
Enterprise Communications Server (Defprog.pdf) on the Avaya Computer
Telephony CD-ROM.

 The Class Structures 27

StringCollection
StringCollection is ? that contains detailed information about ?

StringCollection Parameters

Class Parameter Type Default Value
Add Long

Count String

Item String

Remove

RuntimeLicenseInformation
RuntimeLicenseInformation is an object of PhoneXLicenseInfo class. It contains
information regarding the current runtime license.

PhoneXLicenseInfo Parameters

Class Parameter Type Default Value
LicenseHolder String

The name of the company/user that owns the runtime license key.

LicenseNumber Long

The license number that has been issued by the License Server.

LicenseTotalPurchased Long

The total amount of purchased licenses.

LicenseType Long

The type of license that has been issued.

 The Class Structures 28

ActiveCallClasses Class
The ActiveCallClasses collection is of type CallClassListActive.
ActiveCallClasses will be able to retrieve an active CallClass object using the
methods and properties exposed by the CallClassListActive base collection class.
Once a call is released, PhoneX removes the associated CallClass from the
collection and places it into the OldCallClasses collection.

CallClassListActive Parameters

Class Parameter Type Syntax
Add Method Add() As CallClass

Adds a CallClass to the collection. Sample code:

Dim cls as CallClass

Set cls = Me.px.ActiveCallClasses.Add()

 cls.CalledDN = "8888"

 cls.CallerDN = "8575"

 cls.UUI = "Hello"

Me.px.CallDial cls

Count Long

Returns the number of CallClass that is stored within this collection class. Sample
code:

Dim I as Integer

Dim cls as CallClass

For I = 1 to Me.px.ActiveCallClasses.Count

 Set cls = Me.px.ActiveCallClasses.Item(I)

 If Len(Trim(cls.UUI)) > 0 Then

 DoStatus cls.UUI

 End If

Next I

Item Method Item(Index) As CallClass

Retrieves a particular CallClass from the collection. Note: PhoneX will handle
both the Index value as the position in the list (1-based index) or the CallIdentifier
of the call class. Sample code:

'List1 is the list that contains the call identifiers

Dim cls as CallClass

'Get the first call identifier in List1

If List1.List(0) <> "" Then

 Set cls =
Me.px.ActiveCallClasses.Item(List1.List(0))

End If

 The Class Structures 29

ItemActiveCall Method ItemActiveCall(DN As String) As
CallClass

Retrieves a particular CallClass of the specified DN that is currently active from
the collection. Sample code:

'Assuming we have an active call on DN 8575

Dim cls As CallClass

Set cls = me.px.ActiveCallClasses.ItemActiveCall("8575")

If Not cls is Nothing Then

 Me.px.CallHold(cls)

End If

ItemCallByCallAppearance Method ItemCallByCallAppearance(DN
As String, CallAppearance As
Long) As CallClass

Retrieves a particular CallClass of the specified DN on a specified call appearance
from the collection. It will return NULL if no call classes are associated with the
call appearance for the specified DN.

Sample code:

'Assuming we have an active call on DN 8575

Dim cls As CallClass

Set cls = me. _
 px.ActiveCallClasses.ItemCallByCallAppearance("8
575",1)

If Not cls is Nothing Then

 Me.px.CallUnHold(cls)

End If

Remove Method Remove(Index)

Removes a particular CallClass from the collection. Note: PhoneX will handle both
the Index value as the position in the list (1-based index) or the CallIdentifier of the
call class. Sample code:

'List1 is the list that contains the call identifiers

'Remove the Call Class with first call identifier in List1

If List1.List(0) <> "" Then

 Me.px.ActiveCallClasses.Remove(List1.List(0))

End If

 The Class Structures 30

OldCallClasses Class
The OldCallClasses is of type CallClassListOld. It contains the collection of
CallClass objects that are no longer part of an active call. These are stored for
historical purposes and can be removed manually by using the Remove method.
PhoneX will automatically replace the oldest CallClass once the list size reaches
MaxOldCallListSize.

Note: The OldCallClasses exists in memory as long as the instance of PhoneX is
still running.

CallClassListOld Parameters

Class Parameter Type Syntax
Count Long

Returns the number of CallClass that is stored within this collection class. Sample
Code:

Dim I as Integer

Dim cls as CallClass

For I = 1 to Me.px.OldCallClasses.Count

 Set cls = Me.px.OldCallClasses.Item(I)

 If Len(Trim(cls.UUI)) > 0 Then

 DoStatus cls.UUI

 End If

Next I

Item Method Syntax Item(Index) As
CallClass

Retrieves a particular CallClass from the collection. Note: PhoneX will handle
both the Index value as the position in the list (1-based index) or the CallIdentifier
of the call class.

Sample Code:

'List1 is the list that contains the call identifiers

Dim cls as CallClass

'Get the first call identifier in List1

If List1.List(0) <> "" Then

 Set cls = Me.px.OldCallClasses.Item(List1.List(0))

End If

Remove Method Remove(Index) As CallClass

 The Class Structures 31

Removes a CallClass from the collection. Sample Code:

Dim I as Integer

For I = 1 to Me.px.OldCallClasses.Count

 Me.px.OldCallClasses.Remove(I)

Next I

 The Class Structures 32

AgentClasses Class
The AgentClasses Class is of type AgentClassList collection class that contains all
the class information of logged-in agents. AgentClasses stores the agent classes in
a manner of an unsorted list. Hence the newest AgentClass object is added to the
bottom of the collection.

The collection class exposes the Add method for adding new agent classes to the
list and also for retrieval by using the Item method. The Count property allows the
user to check how many agents are currently logged in using PhoneX. Any agents
that log out will be removed from this list.

AgentClassList Parameters

Class Parameter Type Syntax
Add Method Add()

Adds an AgentClass to the collection. Sample code:

Dim agt as AgentClass

Set agt = Me.px.AgentClasses.Add()

agt.AgentDN = "8575"

agt.AgentID = "9809"

agt.AgentPassword = "Agent1"

Me.px.AgentClasses.Add(agt)

Count Long

Returns the number of AgentClass stored within this collection class. Sample code:

Dim I as Integer

Dim agt as AgentClass

For I = 1 to Me.px.AgentClasses.Count

 Set agt = Me.px.AgentClasses.Item(I)

 If agt.AgentMode = amNotReady And agt.WorkMode =
wmAUX Then

 DoStatus "AUX Mode"

 ElseIf agt.AgentMode = amWorkNotReady And
agt.WorkMode = _ wmACW Then

 DoStatus "ACW Mode"

 The Class Structures 33

 ElseIf agt.AgentMode = amReady And agt.WorkMode =
wmAutoIn Then

 DoStatus "AutoIn Mode"

 ElseIf agt.AgentMode = amReady And agt.WorkMode =
wmManualIn _ Then

 DoStatus "ManualIn Mode"

 End If

Next I

Item Method Item(Index) As AgentClass

Retrieves a particular AgentClass from the collection. Note: The Index can receive
either the position in the list (1-based index) or the AgentIdentifier of the agent
class. Sample code:

'List1 is the list that contains the agent identifiers

Dim agt as AgentClass

'Get the first agent identifier in List1

If List1.List(0) <> "" Then

 Set agt = Me.px.AgentClasses.Item(List1.List(0))

End If

 The Class Structures 34

DeviceClasses Class
The DeviceClasses collection class is of type DeviceClassList collection class that
contains all the class information of devices that are currently monitored by
PhoneX. The collection class stores the device classes in a manner of an unsorted
list. Hence the newest DeviceClass object that is monitored successfully will be
added to the bottom of the collection.

It exposes the Add method for adding new device classes that are successfully
being monitored to the list and also for retrieval by using the Item method. The
Count property allows the user to check how many devices PhoneX is currently
monitoring.

DeviceClassList Parameters

Class Parameter Type Syntax
Add Method Add()

Adds a DeviceClass to the collection. Sample Code:

Dim dev as DeviceClass

Set dev = Me.px.DeviceClasses.Add()

dev.DeviceDN = "8575"

dev.MonitorType = mtCompleteMonitor

Me.px.DeviceClasses.Add(dev)

Count Long

Returns the number of DeviceClass that is stored within this collection class.

Sample Code:

Dim I as Integer

Dim dev as DeviceClass

For I = 1 to Me.px.DeviceClasses.Count

 Set dev = Me.px.DeviceClasses.Item(I)

 If Not dev Is Nothing Then

 DoStatus dev.DeviceDN

 End If

Next I

Item Method Item(Index) As DeviceClass

 The Class Structures 35

Retrieves a particular DeviceClass from the collection. Note: The index can receive
either the position in the list (1-based index) or the device identifier of the device
class.

Sample Code:

Dim dev As DeviceClass

Set dev = Me.px.DeviceClasses.Item(1)

If Not dev Is Nothing Then

 DoStatus "Monitored Device = "+ dev.DeviceDN

End If

 The Class Structures 36

TServers Class
The TServers collection class is of type TServerList collection class that contains
all the strings of telephony link names. The collection class stores these strings in a
manner of an unsorted list. Hence the newest TServer link name that PhoneX
locates will be added to the bottom of the collection.

It exposes the Item method for retrieval of a required string. The Count property
allows the user to check how many telephony links there are which PhoneX was
able to locate.

TServerList Class Parameters

Class Parameter Type Syntax
Count Long

Returns the number of telephony link names currently stored within this collection
class.

Sample Code:

Dim I as Integer

For I = 1 to Me.px.TServers.Count

 DoStatus Me.px.TServers.Item(I)

Next I

Item Method Item(Index) As String

Retrieves a particular telephony link name from the collection. Note: The Index can
only receive the position in the list (one-based index).

Sample Code: (see above for details)

 The Class Structures 37

Use of Class Information
For methods and events exposed by Contact Center Express components,
information is passed between the component and the controlling application
using one or more of the base classes. It is the intention of these components that
class information is held by the base component PhoneX. It is unnecessary and
highly undesirable that applications using these controls should hold copies of any
class variable. To facilitate this operation, methods are provided in the controls to
allow class variables to be created and stored in the base component, and to
retrieve these classes from PhoneX. These are done by means of using classes that
reference their respective collection classes. The methods and properties exposed
by the collection class can be used by the class that references it. These methods
will also ensure that the class variables are initialized to the correct default values.
If these methods are not used, the base components will attempt to add new classes
to the class list. It should be noted that some of the collection classes do not
facilitate adding and/or removing classes as they are Read-only.

Creating a New Class
All classes are created and held within PhoneX. Some collection classes have an
Add() method to allow an application to create a new class. Refer to the Class
Structures section for more information.

Retrieving an Existing Class
Almost all events return a valid class as part of the event parameters. Most
methods also require the passing of a valid class in order to perform the action on
the specified call, device or agent.

Each class is identified by a unique token, called the identifier. In the case of a call
class, this identifier is called the CallIdentifier, and in the case of an agent class,
the AgentIdentifier. These identifiers are generated by PhoneX as the class is
created, and are used by all components (including your application) to retrieve
the required class through the Index parameter of the Item methods. It is also
possible to retrieve the required class if the index number is known.

CallClass: CallIdentifier

To retrieve a call class, the CallIdentifier is required. It is left up to the user to
decide whether to store the CallIdentifier internally or to use the call appearance as
the basis for retrieving the CallIdentifier. For example, upon the CallAlerting()
event firing, a valid call class for the alerting call is supplied. Within the call class
is the CallIdentifier property. When you wish to retrieve information about the call
(perhaps to place it on hold or transfer it), use the ActiveCallClasses.Item(x)
function and supply the internally stored CallIdentifier as the parameter for x or if
the index number is known, use that number in place of x. Two further methods
are available for retrieving the call classes. These are the ItemActiveCall and the
ItemCallByCallAppearance methods. Both methods allow the user to enter the
monitored DN as its first parameter and the latter allows for the call appearance
number for retrieval.

AgentClass: AgentIdentifier

 The Class Structures 38

To retrieve an agent class, your application must store the AgentIdentifier
internally. See the call class CallIdentifier for more information.

 39

C H A P T E R 4

OCX Class Control Events

This chapter contains the events that return from PhoneX whenever there is an
update performed on the classes within PhoneX.

In This Chapter
ClassCallModified.. 40
ClassDeviceModified ... 40
ClassAgentModified... 41

 OCX Class Control Events 40

ClassCallModified
Syntax: ClassCallModified(ByVal clsCall As CallClass,

ByVal Reason As Long)

Description: Fires when the OCX control has made a change to a
call class that is not a result of call control methods
being invoked or events being received from the
Telephony Server.

Response to method: [GetAllCallClass]

Parameters
clsCall The call class that has been modified.

Reason The reason this event has fired. For reason values, refer
to the enumeration enClassModifyCause in the
PhoneX Enumerations Guide.

Class Settings
None.

Sample Code
Private Sub px_ClassCallModified(ByVal clsCall As
CallClass, ByVal Reason As Long)

 Dim OurCallClass As CallClass

 ‘Retrieve the call classes for use in the code.

 If Reason = MOD_QUERY_REQUEST Then

 OurCallClass = clsCall

 End If

End Sub

ClassDeviceModified
Syntax: ClassDeviceModified(ByVal clsDevice As

DeviceClass, ByVal Reason As Long)

Description: Fires when the OCX control has made a change to a
device class that is not a result of device control
methods being invoked or events being received from
the Telephony Server.

Response to method: [GetAllDeviceClass]

Parameters
clsDevice The device class that has been modified.

 OCX Class Control Events 41

Reason The reason this event has fired. For reason values, refer
to the enumeration enClassModifyCause in the
PhoneX Enumerations Guide.

Class Settings
None.

Sample Code
Private Sub px_ClassDeviceModified(ByVal _

clsDevice As DeviceClass, ByVal Reason As Long)

 'Retrieve this device class

 If Reason = MOD_QUERY_REQUEST Then

 clsDevice.StatusSAC = False

 clsDevice.StatusMWT = False

 End If

End Sub

ClassAgentModified
Syntax: ClassAgentModified(ByVal clsAgent As AgentClass,

ByVal Reason As Long)

Description: Fires when the OCX control has made a change to an
agent class that is not a result of call or agent control
methods being invoked or events being received from
the Telephony Server.

Response to method: [AgentClasses.Add]

Parameters
clsAgent The agent class that has been modified.

Reason The reason this event has fired. For reason values, refer
to the enumeration enClassModifyCause in the
PhoneX Enumerations Guide.

Class Settings
None.

 OCX Class Control Events 42

Sample Code
Private Sub px_ClassAgentModified(ByVal clsAgent As
AgentClass, ByVal Reason As Long)

 If Reason = MOD_NEWAGENT Then

 'Change the work mode to after call work mode:

 clsAgent.WorkMode = enAgentWorkMode.wmACW

 End If

End Sub

 43

C H A P T E R 5

OCX Link Control Properties

This chapter contains the property variables of PhoneX that relate to the telephony
link.

In This Chapter
TServerLinkName/TServerLinkNameSecondary 44
TServerUserName/TServerUserNameSecondary 44
TServerUserPassword/TServerUserPasswordSecondary........... 44
PhoneXEnabled .. 45
ProvideEventsForLinkRecovery .. 45
AutoFallBackToPrimaryServer .. 46
AutoFallBackToPrimaryServerTime.. 46
ActiveTServerLink... 46

 OCX Link Control Properties 44

TServerLinkName/TServerLinkName
Secondary
Syntax: TserverLinkName As String

TServerLinkNameSecondary As String

Description: The TServerLinkName and TServerLinkNameSecondary
properties are set to the name of the Telephony Server telephony
link name (eg. AVAYA#G3_SWITCH#CSTA#TSERVER01).

Usage Notes
The properties are string properties. The default values are empty strings. The
TserverLinkNameSecondary is for a hot standby link to a standby server that will
take over if the primary server fails.

TServerUserName/TServerUserNam
eSecondary
Syntax: TserverUserName As String

TserverUserNameSecondary As String

Description: The TServerUserName and TServerUserNameSecondary
properties are set to the name of the Telephony Server user ID.

Usage Notes
These properties are string type properties. The default values are empty strings.
These shall be filled with a valid Telephony Server user ID. The
TserverUserNameSecondary is for a hot standby user name to a standby server that
will take over if the primary server fails.

TServerUserPassword/TServerUser
PasswordSecondary
Syntax: TserverUserPassword As String

TServerUserPasswordSecondary As String

Description: The TServerUserPassword and
TServerUserPasswordSecondary properties are set to the
password for the name of the Telephony Server user ID used.

 OCX Link Control Properties 45

Usage Notes
These properties are of type string. The default values are empty strings. These
shall be filled with a valid Telephony Server user password associated with a valid
Telephony Server user ID. The TserverUserPasswordSecondary is for a hot
standby user password to a standby server that will take over if the primary server
fails.

PhoneXEnabled
Syntax: PhoneXEnabled As Boolean

Description: Setting this property to True will cause PhoneX to log in the user
with the given password and telephony link to the Telephony
Server. This will enable computer telephony integration.

Usage Notes
The property is a Boolean-type property. The default value is False. When set to
True, it will cause PhoneX to log the user into the Telephony Server with the
specified user ID, password and T-link. If login is successful, PhoneX will issue
the TSLoggedIn event. If login fails, PhoneX will issue a TSError event with the
appropriate error codes.

This property is valid only in the runtime environment and should be set after the
TserverLinkName, TserverUserName and TserverUserPassword properties have
been set.

Setting this property to False in the runtime environment will result in any open
links to the Telephony Server being closed.

ProvideEventsForLinkRecovery
Syntax: ProvideEventsForLinkRecovery As Boolean

Description: When set to True, PhoneX provides the controlling application
with events resulting from the failure of the primary Telephony
Server connection.

Usage Notes
The property is a Boolean-type property. The default value is True.

When set to True, PhoneX will provide the controlling application with events
indicating that the primary telephony link has failed. PhoneX will then attempt to
activate the secondary link.

When set to False, PhoneX will attempt to activate the secondary link but no events
will be returned to the controlling application stating that the primary link has
failed.

 OCX Link Control Properties 46

AutoFallBackToPrimaryServer
Syntax: AutoFallBackToPrimaryServer As Boolean

Description: Causes PhoneX to automatically attempt to activate the primary
server after it has failed.

Usage Notes
The property is a Boolean-type property. The default value is True.

When set to True, PhoneX automatically tries to activate the primary server after it
has failed. If the primary server fails and the secondary server is activated, PhoneX
starts to monitor the primary server, waiting for it to be brought back online. Once
online, PhoneX tries to switch its active link back to the primary server. This
transition is governed by the AutoFallBackToPrimaryServerTime property or if the
secondary server fails.

If the property is set to False, PhoneX remains connected to the secondary server
and continues to use the secondary server until the application is restarted. If the
secondary server also fails, the application will lose telephony functionality.

AutoFallBackToPrimaryServerTime
Syntax: AutoFallBackToPrimaryServerTime As Long

Description: Specifies how long PhoneX will wait before switching back to
the primary server after the server is back online.

Usage Notes
This property has a default value set at 1 minute. The range is 1-10 minutes.
AutoFallBackToPrimaryServerTime specifies the time period, in minutes, that
PhoneX will wait after determining that the primary server is online before
switching control back to the primary server.

If the AutoFallBackToPrimaryServer property is set to False, the
AutoFallBackToPrimaryServerTime property has no effect.

ActiveTServerLink
Syntax: ActiveTServerLink As enActiveServer

Description: Specifies the Telephony Server link being used as the active
connection.

 OCX Link Control Properties 47

Usage Notes
This allows other applications to be aware of the current active Telephony Server
link being used. If there are no active Telephony Server links, the application
should stop all telephony functionality. For active server values, refer to the
enumeration enActiveServer in the PhoneX Enumerations Guide.

 48

C H A P T E R 6

OCX Link Control Methods

This chapter contains the relevant PhoneX methods that relate to the telephony
link and monitoring.

In This Chapter
TSListServers ... 49
TSShutDown .. 49
TSMonitorStation... 50
TSMonitorSkill... 52
TSMonitorVDN.. 53
TSGetAuthorizationType ... 54

 OCX Link Control Methods 49

TSListServers
Syntax: TSListServers(ByVal MaxListCount As Long) As Long

Description: Requests a list of available Telephony Servers.

Returns: Long

Parameters
MaxListCount Maximum number of servers to find before ending the

search.

Return Values
pxErrorUnknown The request has failed due to an unknown network

problem.

pxNoServer The request has failed because the client is using
TCP/IP and the IP addresses are not set correctly.

Usage Notes
The TSListServers interrogates the TSAPI environment and returns, via the
TSServerAvailable event, the names of the Telephony Servers found on the
network. The MaxListCount variable specifies the maximum number of servers to
find. If this parameter is set to 0, all servers will be listed.

Return Events (in order fired)
TSServerAvailable This returns with the list of servers available for

telephony integration. These servers would have
Avaya Computer Telephony running in order to be
returned with this event.

Sample Code
Private Sub cmdTSListServers_Click()

 Dim lRtn As Long

 ‘Lists 10 telephony servers available on the network

 lRtn = px.TSListServers(10)

End Sub

TSShutDown
Syntax: TSShutDown() As Long

Description: Closes the stream open to the Telephony Server and cancels all
monitor and routing requests. The IsAvailable property is
updated to reflect this change.

Returns: Long

 OCX Link Control Methods 50

Parameters
None.

Return Values
pxNoError The method completed successfully. The link has been

closed to the Telephony Server.

 pxBadHandle There is no connection open to a Telephony Server.

Usage Notes
All memory is released and the current and old call lists purged of contents. No call
or device control methods can be called once this method has returned.

Sample Code
Private Sub cmdTSShutDown_Click()

 Dim lRtn As Long

 ‘Stop monitoring all devices

 ‘Close the telephony link

 lRtn = px.TSShutDown()

End Sub

TSMonitorStation
Syntax: TSMonitorStation(ByVal clsDevice As DeviceClass) As Long

Description: Requests a station DN be monitored and specifies the type(s) of
monitoring required.

Returns: Long

Parameters
clsDevice The device class containing the information about the

device to be monitored.

Return Values
pxNoError The method completed successfully. The device has

been monitored successfully.

pxClassEmpty The clsDevice passed with this method does not point
to a valid class object.

pxInvalidClass The MonitorType option is set to monitor stop but the
class object, clsDevice, is not known to PhoneX.

pxInvalidParameter One (or more) of the class device parameters is invalid.
For example, the DeviceDN exceeds the maximum
number of character (64) or is zero length or the
MonitorType parameter contains an invalid setting.

 OCX Link Control Methods 51

pxStreamFailed The link to the Telephony Server has failed.

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will
be returned with the event confirmation or any error
event that is generated.

Usage Notes
The TSMonitorStation initiates the monitor on the specified device DN. The
monitor options allow for the device to be fully monitored, monitored as a busy
lamp indicator or unmonitored.

If the device class does not exist within the PhoneX class collection, PhoneX will
add it and make it available. If the TSMonitorStation fails (eg. invalid device or
insufficient user permissions), the error will be reported through the TSError
mechanism (including the invokeID). Once this error has been reported, the device
class will be removed from the PhoneX list. Once all clients have removed
references from it, the device class will be destroyed.

If the monitor of the device is successful, this will be reported in the
TSMonitorStationReturn event. If the Avaya Computer Telephony StreamVersion
(see TSLoggedIn event) is a value of 5 or above, PhoneX will issue a
ClassDeviceModified event at some interval after the TSMonitorStationReturn
event. At this time, certain parameters will have been updated in the device class
(eg. SwitchName).

Return Events (in order fired)
TSMonitorStationReturn This event returns when the monitoring of the

specified DN is successful.

Class Settings
DeviceDN The DN (extension number) of the

Definity/Multivantage device to be monitored.

MonitorType The type of monitoring to be performed on the
specified station. For monitor type values, refer to the
enumeration enMonitorType in the PhoneX
Enumerations Guide.

Sample Code
Private Sub cmdTSMonitorStation_Click()

 Dim clsDev as DeviceClass

 Dim lRtn As Long

 Set clsDev = px.DeviceClasses.Add()

 If Not clsDev Is Nothing Then

 ‘Initialize new device class with desired
info.With the device class information, monitor it

 lRtn = px.TSMonitorStation(clsDev)

 End If

End Sub

 OCX Link Control Methods 52

TSMonitorSkill
Syntax: TSMonitorSkill(ByVal clsDevice As DeviceClass) As Long

Description: Requests a split or skill be monitored and specifies the type(s) of
monitoring required.

Returns: Long

Parameters
clsDevice The device class containing the information about the

device to be monitored

 Return Values
pxNoError The split or skill was monitored successfully.

pxClassEmpty The clsDevice passed with this method does not point
to a valid class object.

pxInvalidClass The MonitorType option is set to monitor stop but the
class object, clsDevice, is not known to PhoneX.

pxInvalidParameter One (or more) of the class device parameters is invalid.
For example, the DeviceDN exceeds the maximum
number of character (64) or is zero length or the
MonitorType parameter contains an invalid setting.

pxStreamFailed The link to the Telephony Server has failed.

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will
be returned with the event confirmation or any error
event that is generated.

Usage Notes
The TSMonitorSkill initiates the monitor on the specified skill. The monitor
options allow for the device to be fully monitored, and receive information about
all calls presented to the skill. Monitoring can also be achieved for agent login and
logout events for the specified skill.

If the device class does not exist within the PhoneX class collection, PhoneX will
add it and make it available. If the TSMonitorStation fails (eg. invalid device or
insufficient user permissions), the error will be reported through the TSError
mechanism (including the invokeID). Once this error has been reported, the device
class will be removed from the PhoneX list. Once all clients have removed
references from it, the device class will be destroyed.

If the monitor of the device is successful, this will be reported in the
TSMonitorSkillReturn event. If the Avaya Computer Telephony StreamVersion
(see TSLoggedIn event) is a value of 5 or above, PhoneX will issue a
ClassDeviceModified event at some interval after the TSMonitorSkillReturn event.
At this time, certain parameters will have been updated in the device class (eg.
SwitchName).

Return Events (in order fired)
TSMonitorSkillReturn This event returns when the monitoring of the

specified skill is successful.

 OCX Link Control Methods 53

Class Settings
DeviceDN The DN (extension number) of the

Definity/MultiVantage device to be monitored.

MonitorType The type of monitoring to be performed on the
specified skill. For monitor type values, refer to the
enumeration enMonitorType in the PhoneX
Enumerations Guide.

Sample Code
See example for TSMonitorStation.

TSMonitorVDN
Syntax: TSMonitorVDN(ByVal clsDevice As DeviceClass) As Long

Description: Requests a VDN be monitored and specifies the type(s) of
monitoring required.

Returns: Long

Parameters
clsDevice The device class containing the information about the

device to be monitored.

Return Values
pxNoError The method completed successfully. The VDN is

monitored successfully.

 pxClassEmpty The clsDevice passed with this method does not point to
a valid class object.

pxInvalidClass The MonitorType option is set to monitor stop but the
class object, clsDevice, is not known to PhoneX.

pxInvalidParameter One (or more) of the class device parameters is invalid.
For example, the DeviceDN exceeds the maximum
number of character (64) or is zero length or the
MonitorType parameter contains an invalid setting.

pxStreamFailed The link to the Telephony Server has failed.

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event
that is generated.

 OCX Link Control Methods 54

Usage Notes
The TSMonitorVDN initiates the monitor on the specified VDN. Monitor options
allow for the device to be fully monitored or unmonitored only.

If the Device class does not exist within the PhoneX class collection, PhoneX will
add it and make it available.

If the TSMonitorStation fails (eg. invalid device or insufficient user permissions),
the error will be reported through the TSError mechanism (including the
invokeID). Once this error has been reported, the device class will be removed
from the PhoneX list. Once all clients have removed references from it, the device
class will be destroyed.

If the monitor of the device is successful, this will be reported in the
TSMonitorVDNReturn event. If the Avaya Computer Telephony StreamVersion
(see TSLoggedIn event) is a value of 5 or above, PhoneX will issue a
ClassDeviceModified event at some interval after the TSMonitorVDNReturn event.
At this time, certain parameters will have been updated in the device class (eg.
SwitchName).

Return Events (in order fired)
TSMonitorVDNReturn This event returns when the VDN was successfully

monitored.

Class Settings
DeviceDN The DN (extension number) of the

Definity/MultiVantage device to be monitored.

MonitorType The type of monitoring to be performed on the specified
VDN. For monitor type values, refer to the enumeration
enMonitorType in the PhoneX Enumerations Guide.

Sample Code
See example for TSMonitorStation.

TSGetAuthorizationType
Syntax: TSGetAuthorizationType(ByVal ServerName As String) As Long

Description: Determines the login and password requirements when opening
a telephony stream for the advertised service. It determines
whether the user that is logged on to the PC needs to supply a
password to be able to use telephony or whether authentication is
required again.

Returns: Long

Parameters
ServerName The string that contains the telephony link name, eg.

AVAYA#G3_SWITCH#CSTA#SERVER

 OCX Link Control Methods 55

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

 Return Events (in order fired)
TSAuthorizationType This event indicates the authorization level for the

specified user (UserName) on the specified server
(ServerName).

Class Settings
None.

Sample Code
Private Sub cmdTSGetAuthorizationType_Click()

 Dim lRtn As Long

 Dim tlinkName As String

 tlinkName = “LUCENT#G3_SWITCH#CSTA#SERVER”

 ‘Get the authorization type

 lRtn = px.TSGetAuthorizationType(tlinkName)

End Sub

 56

C H A P T E R 7

OCX Link Control Events

This chapter contains information regarding the returned events related to the
telephony link methods sent by PhoneX.

In This Chapter
TSServerAvailable ... 57
TSMonitorStationReturn .. 57
TSMonitorSkillReturn.. 58
TSMonitorVDNReturn... 59
TSMonitorStopped ... 60
TSAuthorizationType ... 61
TSLoggedIn.. 61
TSLoggedOut ... 62

 OCX Link Control Events 57

TSServerAvailable
Syntax: TSServerAvailable(ByVal ServerName As String,

ByVal RetCode As Long)

Description: Collects a list of the available Telephony Servers
available to the client machine.

Response to method: [TSListServers]

Parameters
ServerName The name of the Telephony Server found.

RetCode Currently unused.

Usage Notes
This event fires when the OCX control has found a valid and operational
Telephony Server. When no more Telephony Servers have been found,
<ServerName> is blank and RetCode=0

Class Settings
None.

Sample Code
Private Sub px_TSServerAvailable(ByVal ServerName As
String, ByVal RetCode As Long)

 ‘Store ServerName into a list for future retrieval
where ColServer is a collection class with one ‘single
string property

 ColServer.Add ServerName

End Sub

TSMonitorStationReturn
Syntax: TSMonitorStationReturn(ByVal clsDevice As

DeviceClass)

Description: Fires once PhoneX has successfully monitored the
station device.

Response to method: [TSMonitorStation]

Parameters
clsDevice A device class containing all the information about the

device being monitored.

 OCX Link Control Events 58

Usage Notes
Once the device has been successfully monitored, PhoneX will request further
information about the device from the Definity switch/MultiVantage server. This
information will be reported in ClassDeviceModified events or ClassCallModified
events.

If the StreamVersion is 5 or above, PhoneX will request the Definity
switch/MultiVantage server to supply the station name. This information is
appended to the SwitchName parameter of the class. A ClassDeviceModified event
will be fired to indicate this change.

PhoneX will also request current device status information from the Definity
switch/MultiVantage server. This will allow a current profile of the station device
to be determined. If the station device is currently in use, call classes will be
created in PhoneX that represent the call, its status and the devices that are present
on the call. This newly created class will be reported to the container application
via ClassCallModified.

Class Settings
DeviceDN The DN (extension number) of the

Definity/MultiVantage device that has been
monitored.

MonitorType The type of monitoring performed on the specified
station. For monitor type values, refer to the
enumeration enMonitorType in the PhoneX
Enumerations Guide.

Sample Code
Private Sub px_TSMonitorStationReturn(ByVal clsDevice As
DeviceClass)

 ‘Make a call with this device

 Dim cal As CallClass

 Set cal = px.ActiveCallClasses.Add()

 If Not cal Is Nothing Then

 cal.CallerDN = clsDevice.DeviceDN

 cal.CalledDN = “8572“

 px.CallDial(cal)

 End If

End Sub

TSMonitorSkillReturn
Syntax: TSMonitorSkillReturn(ByVal clsDevice As

DeviceClass)

Description: Fires once PhoneX has successfully monitored the
skill device.

 OCX Link Control Events 59

Response to method: [TSMonitorSkill]

Parameters
clsDevice A device class containing all the information about the

device being monitored.

Usage Notes
Once the device has been successfully monitored, PhoneX will request further
information about the device from the Definity switch/MultiVantage server. This
information will be reported in a ClassDeviceModified event.

If the StreamVersion is 5 or above, PhoneX will request the Definity
switch/MultiVantage server supply the skill name. This information is appended to
the SwitchName parameter of the class. A ClassDeviceModified event will be fired
to indicate this change.

Class Settings
DeviceDN The DN (extension number) of the

Definity/MultiVantage device that has been
monitored.

MonitorType The type of monitoring performed on the specified
skill. For monitor type values, refer to the enumeration
enMonitorType in the PhoneX Enumerations Guide.

Sample Code
Private Sub px_TSMonitorSkillReturn(ByVal clsDevice As
DeviceClass)

 If clsDevice.MonitorType = _

 enMonitorType.CompleteMonitor Then

 SkillMonitored = True

 Else

 SkillMonitored = False

 End If

 End Sub

TSMonitorVDNReturn
Syntax: TSMonitorVDNReturn(ByVal clsDevice As

DeviceClass)

Description: Fires once PhoneX has successfully monitored the
VDN.

Response to method: [TSMonitorVDN]

Parameters
clsDevice A device class containing all the information about the

device being monitored.

 OCX Link Control Events 60

Usage Notes
Once the device has been successfully monitored, PhoneX will request further
information about the device from the Definity switch/MultiVantage server. This
information will be reported in a ClassDeviceModified event.

If the StreamVersion is 5 or above, PhoneX will request the Definity
switch/MultiVantage server to supply the VDN name. This information is
appended to the SwitchName parameter of the class. A ClassDeviceModified event
will be fired to indicate this change.

Class Settings
DeviceDN The DN (extension number) of the

Definity/MultiVantage device that has been
monitored.

MonitorType The type of monitoring performed on the specified
VDN. For monitor type values, refer to the
enumeration enMonitorType in the PhoneX
Enumerations Guide.

Sample Code
See example for TSMonitorSkillReturn.

TSMonitorStopped
Syntax: TSMonitorStopped (ByVal clsDevice As DeviceClass,

long MonitorEndCause)

Description: Fires when the Telephony Server stops monitoring a
specific device.

Response to method: None.

Parameters
clsDevice A device class containing all the information about the

device for which monitoring has been stopped.

MonitorEndCause The cause value received from the Telephony Server
that indicates why the monitoring has been stopped.

Usage Notes
The Telephony Server or the Definity switch/MultiVantage server may cancel
monitoring for a device for a number of reasons including administrative changes
on the Definity switch/MultiVantage server or a change in link status between the
Definity switch/MultiVantage server and the Telephony Server. When this
happens, the Telephony Server informs PhoneX which will fire this event.

 OCX Link Control Events 61

Class Settings
Private Sub px_TSMonitorStopped(ByVal clsDevice As
DeviceClass, long MonitorEndCause)

 MsgBox “Monitoring has been stopped for device “ &
clsDevice.DeviceDN

End Sub

TSAuthorizationType
Syntax: TSAuthorizationType(ByVal ServerName As String,

ByVal UserName As String, ByVal AuthType As
Long)

Description: Indicates the authorization level for the specified user
(UserName) on the specified server (ServerName).

Response to method: [TSGetAuthorizationType]

Parameters
ServerName The specified server name link is returned.

UserName The specified user name the authorization is for.

AuthType The authorization type for this user name. For
authorization type values, refer to the enumeration
enAuthType in the PhoneX Enumerations Guide.

Class Settings
None.

Sample Code
Private Sub px_TSAuthorizationType(ByVal ServerName As
String, ByVal UserName As String, ByVal AuthType As Long)

 If AuthType = enAuthType.atAuthLoginIDOnly Then

 ‘Start logging in

 px.PhoneXEnable = True

 End If

End Sub

TSLoggedIn
Syntax: TSLoggedIn(ByVal ActiveServer As enActiveServer, ByVal

TServerVersion As String, ByVal StreamVersion As String,
ByVal LoginReason As enLoginReason)

Description: Indicates the successful login attempt by PhoneX.

 OCX Link Control Events 62

Response to: The user setting the PhoneXEnabled property to True.

Parameters
ActiveServer The Telephony Server link currently being used. This could

be a primary, secondary or no link. For link type values, refer
to the enumeration enActiveServer in the PhoneX
Enumerations Guide.

TserverVersion Telephony Server software version information.

StreamVersion The private data stream version supported by the switch.

LoginReason The reason the login was performed. This could be due to an
error recovery login or a login performed by the user. For
login reason values, refer to the enumeration enLoginReason
in the PhoneX Enumerations Guide.

Class Settings
None.

Sample Code
Private Sub px_TSLoggedIn(ByVal ActiveServer As
enActiveServer, _ ByVal TServerVersion As String, ByVal
StreamVersion As String, _ ByVal LoginReason As
enLoginReason)

 DoStatus “TS Logged In Successfully!”

End Sub

TSLoggedOut
Syntax:

Description: Indicates ..

Response to:

Parameters

Class Settings

Sample Code

 63

C H A P T E R 8

Call Control Methods

This chapter provides information on the use of methods for call control on a
particular monitored station.

In This Chapter
CallAnswer... 64
CallConference... 65
CallDial .. 68
CallDialDirectAgent... 70
CallDialSupervisorAssist ... 72
CallDivert ... 74
CallHold ... 75
CallJoin... 76
CallListenHold ... 78
CallListenUnHold .. 79
CallPartyDrop... 81
CallRelease... 82
CallSendDTMF .. 84
CallTransfer.. 85
CallUnHold .. 88
DeviceMute .. 89
DeviceUnMute ... 90

 Call Control Methods 64

CallAnswer
CallAnswer(ByVal clsCall As CallClass) As LongSyntax:

Description: Attempts to answer the call alerting at the monitored
extension.

Returns: Long

Parameters
clsCall The call class to be answered.

Return Values
PxStreamFailed The link to the Telephony Server has failed.

PxClassEmpty The clsCall passed with this method does not point to a
valid class object.

PxInvalidClass The class object, clsCall, is not known and can not be
included in the list of active calls.

PxInvalidParameter One (or more) of the class device parameters is invalid.
For example, the DeviceDN exceeds the maximum
number of character (64) or is zero length.

PxInvalidCallState The call class is valid and contains valid parameter
information but the call class is not in the alerting state.

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event
that is generated.

Usage Notes
This will attempt to answer a call that is alerting on the current device. If there are
any calls that are currently active, PhoneX will automatically hold these calls
before attempting to answer the alerting call.

Return Events (in order fired)
CallAnswered() PhoneX has successfully answered the call.

Error Event Values
Generic_State_Incompatibility

PhoneX is controlling an analogue telephone and the user failed to go off hook
within the 5 second time period from the issue of the CallAnswer.

No_Call_To_Answer

The Definity ECS has redirected the call to coverage before the CallAnswer
request was received.

Generic_System_Resource_Availability

This is an attempt to add a seventh party to a call with 6 active parties.

 Call Control Methods 65

Resource_Busy

The PhoneX object already has an active call in the connected state that could not
be held.

Sample Code
Private Sub cmdCallAnswer_Click()

 If cal Is Nothing Then

 Exit Sub

 Else

 px.CallAnswer cal

 End if

End Sub

CallConference
Syntax: CallConference(ByVal clsCall As CallClass, ByVal

AddDN As String, ByVal ConfType As Long, ByVal UUI
As String) As Long

Description: Creates a conference call by adding another party,
AddDN, to the active call specified by the call class.

Returns: Long

Parameters
clsCall The existing call class that will have a new party added

to it. This call must be in either the csConnect or
csHold state.

AddDN Destination that needs to be added to the current call.

Additional special characters will be accepted in the
AddDN field as defined in the appendix, Special Dial
Characters.

ConfType The type of conference to be undertaken. For
conference type values, refer to the enumeration
enConferenceType in the PhoneX Enumerations
Guide.

UUI Any user-to-user information that should be sent with
the call to the AddDN destination.

Return Values
pxStreamFailed The link to the Telephony Server has failed.

pxClassEmpty The clsCall passed with this method does not point to a
valid class object.

pxInvalidClass The class object, clsCall, is not known and can not be
included in the list of active calls.

 Call Control Methods 66

pxInvalidParameter One (or more) of the class device parameters is invalid.
For example, the DeviceDN exceeds the maximum
number of character (64) or is zero length, or the UUI
exceeds 96 characters (96 if you have a Release 8
Definity ECS with Avaya Computer Telephony
Release 3.30 Version 2.0 or higher on the Telephony
Server, or 32 if your switch is prior to Release 8).

pxInvalidCallState The call class is valid and contains valid parameter
information, however, the call class is not in the
correct state. The existing call class must be in either
the csConnect or csHold state.

Additionally, if the device is in the process of
performing a screened call conference and the
CallConference method is called without the ConfType
being cfComplete or cfAbort, this error will be
returned.

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will
be returned with the event confirmation or any error
event that is generated.

Usage Notes
The call conference method allows an additional party to be added to an existing
call. The call having the new party added must be in the connected (talking) state or
on hold. This method can not be invoked for an alerting call. If the call is in the
connected state, the call conference method will firstly hold the call before
invoking a new call to the AddDN destination. If the call is already on hold, a new
call is immediately generated to the AddDN destination.

To conference a call class that is on hold at the device and a call class that is in the
connected state, use CallJoin.

Conference Types
ctBlind The conference is set up in an unscreened (blind)

fashion. The initial call is placed on hold and a new
call is placed to the destination specified in AddDN.
Once the new call is in progress, the conference is
completed.

ctWait The current call is placed on hold and a new call is
generated to the AddDN destination. Once this
destination answers the call, the conference is
completed.

ctScreened The screened conference method is set up in two
stages. Firstly, call the CallConference method
specifying the AddDN and the ctScreened type. The
initial call will be placed on hold and a new call placed
to the AddDN parameter. To complete the conference,
call the CallConference method specifying the
ctComplete type.

ctComplete The Complete conference type is used to join the two
parties setup as a result of the CallConference with a
ctScreened type.

 Call Control Methods 67

ctAbort The conference abort is used to clear down the new
party generated as a result of the CallConference with
a ctScreened type.

The original call remains in the held state.

Interactions When multiple PhoneX users are involved as various
parties to a conference call, the events fired differ
depending on the activity the party is performing.
When the conference is completed, all parties receive
CallModified methods for the call class. For each
party, however the reason for the modification is
different.

 In general terms, the party that instigates the
CallConference methods receives the CallReleased
and CallModified events. Those parties who are
passive participants to the conference call will receive
CallModified events, with the event cause indicating
that a new party has been added to the conference call.

Example
Step 1: Start Conference

Step 2: Add New Party

Step 3: Complete

 CallConference

Return Events
CallHeld pecified by the call class has been held.

CallOriginated leted making a
call and the switch has decided to attempt the call.

The call s

CallActive A call has been successfully originated from the
specified device.

This event fires when PhoneX has comp

 Call Control Methods 68

This event fires for an outbound call when the call has
been presented to the destination device.

s to the party that instigated the

released.

CallModified This event returns for all other parties that are in the
conference call, including the conference controller.

ver, different between the
d the controller.

rror Event Values

CallDelivered

CallReleased This event return
conference stating that the original call has been

The reasons are, howe
passive participants an

E
Co ce_Member_Li

The request attempted to add a seventh party to an existing six pa

nferen mit_Exceeded

rty conference
ll.

mple C e

ca

Sa od
Private Sub cmdConference_Click()

m cal As CallClass

 Set cal =
Classes.ItemActiveCall(“8575”)

cal Is Nothing And txtCall <> "" Then

 px.C

 If

End Sub

Dial

 Di

px.ActiveCall

 If Not

 allConference cal, txtCall, 1

 End

Call
Syntax: CallDial(ByVal clsCall As CallClass) As Long

CalledDN. Description: Places an outgoing call from CallerDN to the
Optionally sends UUI to called party.

Returns: Long

Parameters
clsCall A call class containing the information necessary to make

the call.

Return Values
pxStreamFailed

pxClassEmpty

The link to the Telephony Server has failed.

The clsCall passed with this method does not point to a
valid class object.

pxInvalidClass The class object, clsCall, is not known and can not be
included in the list of active calls.

 Call Control Methods 69

6 characters (96 if you have a Release 8
Definity ECS with Avaya Computer Telephony Release
3.30 Version 2.0 or higher on the Telephony Server, or 32

d and contains valid parameter

an 1000 that is returned from the
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event
that is generated.

Usage Notes

pxInvalidParameter One (or more) of the class device parameters is invalid.
For example, the CallerDN or CalledDN exceeds the
maximum number of character (64) or is zero length, or
the UUI exceeds 9

if your switch is prior to Release 8).

pxInvalidCallState The call class is vali
information however, the call class is not in the correct
state. A call dial method that is called where the call class
CallState parameter is not csIdle will return this error.

invokeID Any number greater th

The CallDial service orig
(CallerDN) must be a de

If the call class does not
it and make it available. If the
error will be reported thr
TSError mechanism (inc

Class Settings

inates a call between two devices. The originator
vice on the switch.

exist within the PhoneX class collection, PhoneX will add
CallDial fails (eg. invalid device/destination), the

ough the CallFailed event (including the call class) or
luding the invokeID).

CallerDN The DN that the call should be made from. This device
tage

st be greater than 0
ss to

e

utside 0..9 or a..z will result in the method

CalledDN

ll.

Any alpha characters (a..z) will be converted to the
numeric equivalent.

N field as defined in the appendix, Special Dial

 must

UUI Any user-to-user information that may be required to be
sent with the new call.

must exist on the local Definity switch/MultiVan
server.

The CallerDN parameter mu
characters and less than 64 characters for the call cla
attempt to originate a call.

Any alpha characters (eg. a..z) will be converted to th
numeric equivalent.

Characters o
being rejected.

The destination that the call will be made to.

The CallerDN parameter must be greater than 0
characters and less than 64 characters for the call class to
attempt to originate a ca

 Additional special characters will be accepted in the
CalledD
Characters.

If the destination is off net, the CalledDN parameter
contain any trunk access codes or ARS / AAR
information necessary to allow the call to progress.

 Call Control Methods 70

Return Events
CallActive A call has been successfully originated from the specified

This event fires when PhoneX has completed making a
he switch has decided to attempt the call.

tbound call when the call has
ination device.

device.

CallOriginated
call and t

CallDelivered This event fires for an ou
been presented to the dest

Error Event Values
Invalid_Calling_Device

The device specified in the CallingDN is out of service or incorrectly administered
on the switch.

_Device_Identifier

CallingDN is invalid.

neric_

e orig

hook within five seconds

Invalid_CSTA

The device specified in the

Ge State_Incompatability

Th inator does not go off hook and can not be forced off hook.

If CallingDN is an analog station, this must be taken off
of the CallDial being issued.

Sample Code
Private Sub Dial()

 Set cal = px.ActiveCallClasses.Add()

 Not cal Is Nothing And txtCall <> "" Then

 cal.CallerDN = txtCaller

 px.CallDial cal

End If

End Sub

alDirectAgent

 If

 cal.CalledDN = txtCalled

 cal.UUI = txtMsg

CallDi
Syntax: CallDialDirectAgent(ByVal clsCall As CallClass, ByVal

Returns:

SplitSkill As String) As Long

Description: Places an outgoing call from the DN to the AgentDN.

Long

Parameters
clsCall The call class containing information to complete the call.

 Call Control Methods 71

Return Values
pxStreamFailed

pxClassEmpty

pxInvalidClass wn and can not be

pxInvalidParameter

 (96 if you have a Release 8

pxInvalidCallState lid and contains valid parameter
information however the call class is not in the correct
state. A CallDialDirectAgent method that is called where

 the

that is generated.

The link to the Telephony Server has failed.

The clsCall passed with this method does not point to a
valid class object.

The class object, clsCall, is not kno
included in the list of active calls.

One (or more) of the class device parameters is invalid.
Eg, the CallerDN or CalledDN exceeds the maximum
number of characters (64) or is zero length, or the UUI
exceeds 96 characters
Definity ECS with Avaya Computer Telephony Release
3.30 Version 2.0 or higher on the Telephony Server, or 32
if your switch is prior Release 8).

The call class is va

the call class CallState parameter is not csNone or csIdle
will return this error.

invokeID Any number greater than 1000 that is returned from
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event

Usage Notes
This method will make a
between the DN and the
CallDialDirectAgent wil
connection with the orig
controlling application d
pecific agent.

Class Settings

 call to an agent DN directly. It attempts to originate a call
 agent logged into the specified split/skill.
l then attempt to create a new call and establish a
inating device first. This method is used mainly when the
ecides that the originator of the call needs to speak with a

s

CallerDN

e
the

direct agent call will be denied.

e

The CalledDN must be a valid ACD agent extension. The

mber of this
split and must be logged in.

The DN the call should be made from. This device must
exist on the local Definity switch/MultiVantage server. If
the CalledDN contains a valid logical agent ID and th
agent is logged in, the call will be made. However, if
agent is logged out, the

 The CallerDN parameter must be greater than 0
characters and less than 64 characters for the call class to
attempt to originate a call.

Any alpha characters (a..z, A..Z) will be converted to th
numeric equivalent.

Characters outside 0..9 or a..z, A..Z will result in the
method being rejected.

CalledDN
CalledDN agent must be logged in to receive this call. If
the agent is logged out, the direct agent call will be
denied.

OtherDN The OtherDN must contain a valid split extension. The
agent specified in CalledDN must be a me

 Call Control Methods 72

Return Events
CallActive A call has been successfully originated from the specified

device.

Fires when PhoneX has completed making a call and the

Fires for an outbound call when the call has been
d to the destination device.

CallOriginated
switch has decided to attempt the call.

CallDelivered
presente

Error Event Values
Invalid_Calling_Device

The device specified in the CallingDN is out of service or incorrectly administered

cified in the CallingDN is invalid.

ook.

 Callin
e CallD

Sample Code

on the switch.

Invalid_CSTA_Device_Identifier

The device spe

Generic_State_Incompatability

Th inator does not go off hooe orig k and can not be forced off h

If gDN is an analog station, this must be taken off hook within 5 seconds of
th ialDirectAgent being issued.

Private Sub cmdCallDialDirectAgent_Click()

l, txtSplitSkill)

End Sub

CallDialSup

 Dim lRtn As Long

 lRtn = px.CallDialDirectAgent(ca

ervisorAssist
Syntax: CallDialSupervisorAssist(ByVal clsCall As CallClass,

ByVal SplitSkill As String) As Long

 Requests the specified DN to originate an outgoing call to

sion

Returns: Long

Description:
a supervisor of a split/skill. Used if the application
requires making a call to consult with another exten
(typically the supervisor) within the ACD group.

Parameters
clsCall Call class containing information to complete the call.

The split/skill device tSplitSkill he agent requires supervisor

Return Values

assistance for.

pxStreamFailed The link to the Telephony Server has failed.

 Call Control Methods 73

pxInvalidClass

pxInvalidParameter
DN exceeds the

, or
8

tate

his error.

Any number greater than 1000 that is returned from the

nerated.

Return Events

pxClassEmpty The clsCall passed with this method does not point to a
valid class object.

The class object, clsCall, is not known and can not be
included in the list of active calls.

One (or more) of the class device parameters is invalid.
For example, the CallerDN or Called
maximum number of character (64) or is zero length
the UUI exceeds 96 characters (96 if you have a Release
Definity ECS with Avaya Computer Telephony Release
3.30 Version 2.0 or higher on the Telephony Server, or 32
if your switch is prior to Release 8).

pxInvalidS The call class is valid and contains valid parameter
information however, the call class is not in the correct
state. A CallDialSupervisorAssist method that is called
where the call class CallState parameter is not csNone or
csIdle will return t

invokeID
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event
that is ge

CallActive A call has been successfully originated from the specifie
device.

d

This event fires when PhoneX has completed making a
call and the switch has decided to attempt the call.

This event fires for an outbound call when the call has

CallOriginated

CallDelivered
been presented to the destination device.

Error Event Values
Invalid_Calling_Device

The device specified in the Calli
on the switch.

ngDN is out of service or incorrectly administered

Generic_State_Incompatability

 does not go off hook and can not be forced off hook.

nds of
e CallD g issued.

Invalid_CSTA_Device_Identifier

The device specified in the CallingDN is invalid.

The originator

If CallingDN is an analog station, this must be taken off hook within 5 seco
th ialSupervisorAssist bein

Sample Code
Private Sub cmdCallDialSupervisorAssist_Click()

 Dim lRtn As Lon

 lRtn =
px.CallDialSupervisorAssist(cal,splitskillTxt)

End Sub

g

 Call Control Methods 74

CallDivert
Syntax: CallDivert(ByVal clsCall As CallClass, ByVal

DivertDN As String) As Long

Description: Diverts (deflects) the alerting incoming call to the
DivertDN.

Returns: Long

Parameters
clsCall The CallClass object of the call alerting at the device

that is to be diverted.

DivertDN Destination to divert the call to.

Return Values
pxStreamFailed The link to the Telephony Server has failed.

pxClassEmpty The clsCall passed with this method does not point to a
valid class object.

pxInvalidClass The class object, clsCall, is not known and can not be
included in the list of active calls.

pxInvalidParameter One (or more) of the class device parameters is invalid.
For example, the CallerDN or CalledDN exceeds the
maximum number of character (64) or is zero length, or
the UUI exceeds 96 characters (96 if you have a Release
8 Definity ECS with Avaya Computer Telephony
Release 3.30 Version 2.0 or higher on the Telephony
Server, or 32 if your switch is prior to Release 8). Or
the DivertDN parameter supplied contains invalid
characters.

pxInvalidCallState The call class is valid and contains valid parameter
information however the call class is not in the correct
state. A CallDivert method that is called where the call
class CallState parameter is not csNone or csIdle will
return this error.

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will
be returned with the event confirmation or any error
event that is generated.

Return Events
CallDiverted The alerting call has successfully been diverted to a new

destination as specified.

Error Event Values
Invalid_Calling_Device

The device specified in the DivertDN is out of service or incorrectly administered
on the switch.

 Call Control Methods 75

Sample Code
In the user interface of the sample application there is the facility to turn on call
diverting and specify an extension to divert the call to. If it is turned on and there is
a number to divert the call to then it is diverted before it can be answered.

Private Sub px_CallAlerting(ByVal clsCall As _

 Object, ByVal EventCause As Long)

 ‘This event is triggered when a call is received on
the monitored device. Save the call identifier ‘of the
incoming call. This identifier is used outside of this
event to retrieve this call

 curCall = clsCall.CallIdentifier

 If optOn And txtDivertTo <> "" Then

 px.CallDivert clsCall, txtDivertTo

 Else ‘Call divert is not activated

 cmdAnswer.Enabled = True

 cmdHangup.Enabled = True

 cmdMakeCall.Enabled = False

 DoStatus "Incoming call"

 End If

End Sub

CallHold
Syntax: CallHold(ByVal clsCall As CallClass) As Long

Description: Places the active call on the specified DN on hold.

Returns: Long

Parameters
clsCall The call class object that is to be held.

Return Values
pxStreamFailed The link to the Telephony Server has failed.

pxClassEmpty The clsCall passed with this method does not point to a
valid class object.

pxInvalidClass One of the call classes passed with this method is not
known to PhoneX and can not be added to the list of
active calls.

pxInvalidCallState The call class is valid and contains valid parameter
information however the call class is not in the correct
state. A CallHold method that is called where the call
class CallState parameter is not csConnect or csActive
will return this error.

 Call Control Methods 76

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event
that is generated.

Return Events
CallHeld The call specified by the call class has been held

Error Event Values
Invalid_Calling_Device

The device specified in the CallingDN is out of service or incorrectly administered
on the switch.

Sample Code
This example gets the current active call and checks the state of it. The current call
is placed on hold if it is in the connected state or it is placed in the connected state if
it is on hold. Otherwise it remains unaffected.

Private Sub cmdHold_Click()

‘curCall is retrieved from the CallAlerting, CallAnswered
and CallOriginating events

 Dim cal As CallClass

 Set cal = px.ActiveCallClasses.Item(curCall)

 If Not cal Is Nothing Then

 If cal.CallState = 4 Then

 ‘The call is on hold

 px.CallUnhold cal

 ElseIf cal.CallState = 3 Then

 ‘If there is a connected call

 px.CallHold cal

 End If

 End If

End Sub

CallJoin
Syntax: CallJoin(ByVal clsCallA As CallClass, ByVal clsCallB

As CallClass, ByVal JoinType As Long) As Long

Description: Joins two calls that exist on a single station device. The
call join will allow two calls to be transferred together, in
which case the new call leaves the primary device, or to
be conferenced together to create a multi-party
conference.

Returns: Long

 Call Control Methods 77

Parameters
clsCallA The first call class to be joined.

clsCallB The second call class to be joined.

JoinType Determines whether the calls will be transferred together
or conferenced together.

Return Values
pxStreamFailed The link to the Telephony Server has failed.

pxClassEmpty One of the call classes passed with this method does not
point to a valid class object.

pxInvalidClass One of the supplied call classes is not known and can not
be included in the list of call classes.

pxInvalidCallState One of the supplied call classes is valid and contains valid
parameter information however the call class is not in the
correct state. The CallJoin method requires one call class
specified to be in a held state and one to be in an active
state.

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event
that is generated.

Return Events
CallReleased This event shall return to the caller that instigated the

CallJoin method.

CallModified Joining the calls was successful.

Error Event Values
Invalid_Calling_Device

The device specified in the CallingDN is out of service or incorrectly administered
on the switch.

Sample Code
Private Sub cmdCallJoin_Click()

 Dim lRtn As Long

 ‘Originally, we have two call classes. CalA and CalB

 If CalA.CallState = CS_HELD Then

 lRtn = px.CallJoin(CalA,CalB,1)

 Else

 lRtn = px.CallJoin(CalB,CalA,2)

 End If

End Sub

 Call Control Methods 78

CallListenHold
Syntax: CallListenHold(ByVal clsCall As CallClass, ByVal

selectedParty As String, ByVal AllPartyHold As Boolean)
As Long

Description: Disconnects a call party’s listen hold path from the active
conversation. This effectively excludes that party from
hearing any further part of the conversation. The talk path
for the party is intact.

Returns: Long

Parameters
clsCall The call class representing the call in progress.

SelectedParty The selected party that is to be listen held from the party
specified in the call class.

AllPartyHold If True, the listening paths of all parties on the call will be
held from the device in the call class. The SelectedParty
parameter is ignored. If False, only the SelectedParty
parameter is held from the device in the call class.

Return Values
pxStreamFailed The link to the Telephony Server has failed.

pxClassEmpty The clsCall passed with this method does not point to a
valid class object.

pxInvalidClass The class object, clsCall, is not known and can not be
included in the list of active calls.

pxInvalidParameter One (or more) of the class device parameters is invalid.
For example, the CallerDN or CalledDN exceeds the
maximum number of character (64) or is zero length, or
the UUI exceeds 96 characters (96 if you have a Release 8
Definity ECS with Avaya Computer Telephony Release
3.30 Version 2.0 or higher on the Telephony Server, or 32
if your switch is prior to Release 8). Or the selectedParty
parameter supplied contains invalid characters.

pxInvalidCallState The call class is valid and contains valid parameter
information however the call class is not in the correct
state. A CallListenHold method that is called where the
call class CallState parameter is not csConnect will return
this error.

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event
that is generated.

Return Events
CallListenHeld This event indicates that the request has been successful.

The call class will contain the current status of the
connection state of all parties to the call.

 Call Control Methods 79

Error Event Values
Invalid_Calling_Device

The device specified in the CallingDN is out of service or incorrectly administered
on the switch.

Value_Out_Of_Range

A party specified is not part of the call or is in the wrong state. The selected party
can not be in the alerting state.

Invalid_Object_State

The request to listen hold from all parties has not been granted because there are no
other eligible parties on the call.

Generic_System_Resource_Availability

Switch capacity has been exceeded.

Sample Code
Private Sub cmdListenHold_Click()

 Dim lRtn As Long

 If cal Is Nothing Then

 Exit Sub

 Else

 lRtn =
px.CallListenHold(cal,partyTxt,False)

 End if

End Sub

CallListenUnHold
Syntax: CallListenUnHold(ByVal clsCall As CallClass,ByVal

selectedParty As String, ByVal AllPartyHold As Boolean)
As Long

Description: Retrieves party from selective listen hold. Reverses the
CallListenHold status for a specific device on the current
call.

Returns: Long

Parameters
clsCall The call class that specifies the subject device to retrieve

from CallListenHold.

SelectedParty The party whose listen path is to be re-connected to the
device specified in the call class.

 Call Control Methods 80

AllPartyHold If set to True, the listening paths of all parties on the call
will be reconnected to the device specified in the call class
and the SelectedParty parameter is ignored.

If False only the party specified in the SelectedParty
parameter is connected.

Return Values
pxStreamFailed The link to the Telephony Server has failed.

pxClassEmpty The clsCall passed with this method does not point to a
valid class object.

pxInvalidClass The class object, clsCall, is not known and can not be
included in the list of active calls.

pxInvalidParameter One (or more) of the class device parameters is invalid.
For example, the CallerDN or CalledDN exceeds the
maximum number of character (64) or is zero length, or
the UUI exceeds 96 characters (96 if you have a Release 8
Definity ECS with Avaya Computer Telephony Release
3.30 Version 2.0 or higher on the Telephony Server, or 32
if your switch is prior to Release 8). Or the selectedParty
parameter supplied contains invalid characters.

pxInvalidCallState The call class is valid and contains valid parameter
information however the call class is not in the correct
state. A CallListenUnHold method that is called where
the call class CallState parameter is not csHold will return
this error.

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event
that is generated.

Return Events
CallListenUnHeld The CallListenUnHeld indicates that the request has been

successful.

Error Event Values
Invalid_Calling_Device

The device specified in the CallingDN is out of service or incorrectly administered
on the switch.

 Value_Out_Of_Range

A party specified is not part of the call or is in the wrong state. The selected party
can not be in the alerting state.

Invalid_Object_State

The request to listen hold from all parties has not been granted because there are no
other eligible parties on the call.

Generic_System_Resource_Availability

Switch capacity has been exceeded.

 Call Control Methods 81

Sample Code
Private Sub cmdListenUnHold_Click()

 Dim lRtn As Long

 If cal Is Nothing Then

 Exit Sub

 Else

 lRtn =
px.CallListenUnHold(cal,partyTxt,True)

 End if

End Sub

CallPartyDrop
Syntax: CallPartyDrop(ByVal clsCall As CallClass, ByVal

DropDN As String) As Long

Description: Drops a specific party from the existing call.

Returns: Long

Parameters
clsCall The call class that the party should be removed from

DropDN The party that should be removed from the call.

Return Values
pxStreamFailed The link to the Telephony Server has failed.

pxClassEmpty The clsCall passed with this method does not point to a
valid class object.

pxInvalidClass The class object, clsCall, is not known and can not be
included in the list of active calls.

pxInvalidParameter One (or more) of the class device parameters is invalid.
For example, the CallerDN or CalledDN exceeds the
maximum number of character (64) or is zero length, or
the UUI exceeds 96 characters (96 if you have a Release 8
Definity ECS with Avaya Computer Telephony Release
3.30 Version 2.0 or higher on the Telephony Server, or 32
if your switch is prior to Release 8). Or the DropDN
parameter supplied contains invalid characters.

pxInvalidCallState The call class is valid and contains valid parameter
information however the call class is not in the correct
state. A CallPartyDrop can not be called for a call class
that is alerting at the specified device.

 Call Control Methods 82

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event
that is generated.

Usage Notes
Where the call is a two-party call, this results in the call being cleared. For a multi
party conference, any party can be removed from the call, regardless of the order in
which the parties were added.

In a multi-party conference, using the CallPartyDrop method does not clear down
the entire call even when the dropped party is the only “on switch” device.

A conference call with one station and two trunk parties in progress, issuing a
CallPartyDrop for the station device will leave the two trunk parties connected.

Refer CallRelease.

Return Events
CallPartyDropped A party has been removed from the call.

Error Event Values
Value_Out_Of_Range

A party specified is not part of the call or is in the wrong state. The selected party
can not be in the alerting state.

Generic_System_Resource_Availability

Switch capacity has been exceeded

Sample Code
Private Sub cmdHangup_Click()

 ‘Hang up currently active call

 ‘curCall is retrieved from the
CallAlerting,CallAnswered and CallOriginating events

 Dim cal As CallClass

 ‘curCall1 = call identifier of the current call

 Set cal = px.ActiveCallClasses.Item(curCall1)

 If Not cal Is Nothing Then

 px.CallRelease cal

 End If

End Sub

CallRelease
Syntax: CallRelease(ByVal clsCall As CallClass) As Long

 Call Control Methods 83

Description: Releases all connections on the specified call appearance
(the default is the active call appearance), including all
members of an established conference call. The call class
is returned to the idle state and moved to the old call list.

Returns: Long

Parameters
clsCall The call class representing the call to be released.

Return Values
pxStreamFailed The link to the Telephony Server has failed.

pxClassEmpty The clsCall passed with this method does not point to a
valid class object.

pxInvalidClass The class object, clsCall, is not known and can not be
included in the list of active calls.

pxInvalidParameter One (or more) of the class device parameters is invalid.
For example, the CallerDN or CalledDN exceeds the
maximum number of character (64) or is zero length, or
the UUI exceeds 96 characters (96 if you have a Release 8
Definity ECS with Avaya Computer Telephony Release
3.30 Version 2.0 or higher on the Telephony Server, or 32
if your switch is prior to Release 8).

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event
that is generated.

Return Events
CallPartyDropped There may be more than one CallPartyDropped event

that occurs depending on the number of parties this
method is invoked for.

Error Event Values
Value_Out_Of_Range

A party specified is not part of the call or is in the wrong state. The selected party
can not be in the alerting state.

Generic_System_Resource_Availability

Switch capacity has been exceeded

Sample Code
Private Sub cmdHangup_Click()

 ‘Hang up currently active call

 Dim cal As CallClass

 ‘curCall is the call identifier of the current call

 Call Control Methods 84

 Set cal = px.ActiveCallClasses.Item(curCall)

 If Not cal Is Nothing Then

 px.CallRelease cal

 End If

End Sub

CallSendDTMF
Syntax: CallSendDTMF(ByVal clsCall As CallClass, ByVal

DTMFDigits As String) As Long

Description: Generates DTMF digits on the specified monitored DN
and sends them to all parties on the call. The call must be
in the connected state.

Returns: Long

Parameters
clsCall The call class representing the active call that requires the

DTMF string to be outpulsed.

DTMFDigits A string of dialable characters that will be out pulsed as
in-band DTMF. This string must be less than 32
characters and only contain the characters 0..9, a..z, A..Z,
*, #.

Return Values
pxStreamFailed The link to the Telephony Server has failed.

pxClassEmpty The clsCall passed with this method does not point to a
valid class object.

pxInvalidClass The class object, clsCall, is not known and can not be
included in the list of active calls.

pxInvalidParameter The DTMFDigits parameter contains invalid information.
The parameter must have a length greater than 0 and less
than 32 characters and only contain characters 0..9, a..z,
A..Z, *, #.

pxInvalidCallState The call class is valid and contains valid parameter
information however the call class is not in the correct
state.

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event
that is generated.

Return Events
 None.

 Call Control Methods 85

Error Event Values
Value_Out_Of_Range

A party specified is not part of the call or is in the wrong state. The selected party
can not be in the alerting state.

Generic_System_Resource_Availability

Switch capacity has been exceeded

Sample Code
When a call is in the connected state, the sample application provides the facility to
send DTMF signals using an interface that resembles the keypad on a phone. Here
is the code from the click event for the hash button:

Private Sub cmdHash_Click()

 ‘curCall is retrieved from the CallAlerting,
CallAnswered and CallOriginating events

 Dim cal As CallClass

 Set cal = px.ActiveCallClasses.Item(curCall)

 If Not cal Is Nothing Then

 Px.CallSendDTMF cal, cmdHash.Caption

 End If

End Sub

CallTransfer
Syntax: CallTransfer(ByVal clsCall As CallClass, ByVal

DestinationDN As String, ByVal TransferType As Long,
ByVal UUI As String, ByVal Persist As Boolean) As Long

Description: Transfers the active call on the specified monitored DN to
another DN, optionally specifying the transfer method
(default=BLIND)

Returns: Long

Parameters
clsCall The call class representing the active call to be

transferred.

DestinationDN Destination that the active call will be transferred to.

Additional special characters will be accepted in the
DestinationDN field as defined in the appendix, Special
Dial Characters.

TransferType The type of transfer to be undertaken. For transfer type
values, refer to the enumeration enTransferType in the
PhoneX Enumerations Guide.

UUI Any user-to-user information to be sent with the call.

Persist Reserved. Not used.

 Call Control Methods 86

Return Values
pxStreamFailed The link to the Telephony Server has failed.

pxClassEmpty The clsCall passed with this method does not point to a
valid class object.

pxInvalidClass The class object, clsCall, is not known and can not be
included in the list of active calls.

pxInvalidParameter One (or more) of the class device parameters is invalid.
For example, the CallerDN or CalledDN exceeds the
maximum number of character (64) or is zero length, or
the UUI exceeds 96 characters (96 if you have a Release 8
Definity ECS with Avaya Computer Telephony Release
3.30 Version 2.0 or higher on the Telephony Server, or 32
if your switch is prior to Release 8). Or the
DestinationDN parameter supplied contains invalid
characters.

pxInvalidCallState The call class is valid and contains valid parameter
information however the call class is not in the correct
state. The call represented by the call class must be active
at the monitored device. A call alerting at the specified
device can not be transferred.

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event
that is generated.

Usage Notes
The CallTransfer method allows an existing call to be transferred to a new
destination. The call being transferred in the connected (talking) state or be on
hold. This method can not be invoked for a call alerting at the monitored station. If
the call is in the connected state, the call transfer method will firstly hold the call
before invoking a new call to the DestinationDN destination. If the call is already
on hold, a new call is immediately generated to the DestinationDN destination.

To transfer a call class that is on hold at the device to a call class that is in the
connected state, use CallJoin.

Transfer Types
ttBlind The transfer is set up in an unscreened (blind) fashion.

The initial call is placed on hold and a new call is placed
to the destination specified in DestinationDN. Once the
new call is in progress, the transfer is completed.

ttWait The current call is placed on hold and a new call is
generated to the DestinationDN destination. Once this
destination answers the call, the transfer is completed.

ttScreened The screened transfer is set up in a two-stage method.
Firstly, call the CallTransfer method specifying the
DestinationDN and the ttScreened type. The initial call
will be placed on hold and a new call placed to the
DestinationDN parameter. To complete the transfer, call
the CallTransfer method specifying the ttComplete type.

 Call Control Methods 87

ttComplete The complete transfer type is used to join the two parties
set up as a result of the CallTransfer with a ttScreened
type.

ttAbort The transfer abort is used to clear down the new party
generated as a result of the CallTransfer with a ttScreened
type.

The original call remains in the held state.

Interactions When multiple PhoneX users are involved as various
parties to a conference call, the events fired differ
depending on the activity the party is performing. When
the conference is completed, all parties receive
CallModified events for the call class. For each party,
however, the reason for the modification is different.

 In general terms, the party that instigates the CallTransfer
methods receives a CallTransferred event, those parties
who are passive participants to the conference call will
receive CallModified events with the event cause
indicating that a new party has been added to the
conference call.

Return Events
CallHeld The call specified by the call class has been held.

CallActive A call has been successfully originated from the specified
device.

CallOriginated Fires when PhoneX has completed making a call and the
switch has decided to attempt the call.

CallDelivered Fires for an outbound call when the call has been
presented to the destination device.

CallModified Returns for all the passive parties in the transfer.

CallReleased Returns to the caller that instigated the transfer.

Error Event Values
Value_Out_Of_Range

A party specified is not part of the call or is in the wrong state. The selected party
can not be in the alerting state.

Generic_System_Resource_Availability

Switch capacity has been exceeded

Sample Code
If there is a connected call then the transfer button is enabled. The button caption
will change when the call is being transferred. The action performed by this code is
determined by the button caption.

This example illustrates a blind transfer and how to cancel a transfer.

Private Sub Transfer()

 ‘curCall is retrieved from the
CallAlerting,CallAnswered and CallOriginating events

 Dim cal As CallClass

 Call Control Methods 88

 Set cal = px.ActiveCallClasses.Item(curCall)

 If Not cal Is Nothing And txtTransferTo <> "" _

 And cmdTransfer.Caption = transText Then

 ‘Transfer the call

 cmdTransfer.Caption = transCancelText

 px.CallTransfer cal, txtTransferTo, 1

 ElseIf cmdTransfer.Caption = TransCancelText Then

 ‘Call is currently being transferred,so
cancel the Transfer

 cmdTransfer.Caption = transText

 If Not cal Is Nothing Then

 px.CallTransfer cal, "", 5

 End If

 End If

End Sub

CallUnHold
Syntax: CallUnHold(ByVal clsCall As CallClass) As Long

Description: Returns the held call on the specified DN call appearance
to the active state.

Returns: Long

Parameters
clsCall The call class that is required.

Return Values
pxStreamFailed The link to the Telephony Server has failed.

pxClassEmpty The clsCall passed with this method does not point to a
valid class object.

pxInvalidClass The class object, clsCall, is not known and can not be
included in the list of active calls.

pxInvalidParameter One (or more) of the class device parameters is invalid.
For example, the CallerDN or CalledDN exceeds the
maximum number of character (64) or is zero length, or
the UUI exceeds 96 characters (96 if you have a Release 8
Definity ECS with Avaya Computer Telephony Release
3.30 Version 2.0 or higher on the Telephony Server, or 32
if your switch is prior to Release 8).

 Call Control Methods 89

pxInvalidCallState The call class is valid and contains valid parameter
information however the call class is not in the correct
state. A CallUnHold method that is called where the call
class CallState parameter is not csHold will return this
error.

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event
that is generated.

Return Events
CallUnHeld Returns if the call to the CallUnHold method was

successful.

Error Event Values
Value_Out_Of_Range

A party specified is not part of the call or is in the wrong state. The selected party
can not be in the alerting state.

Generic_System_Resource_Availability

Switch capacity has been exceeded

Sample Code
See example for CallHold.

DeviceMute
Syntax: DeviceMute(ByVal clsCall As CallClass) As Long

Description: Mutes the active call on the specified DN.

Returns: Long

Parameters
clsCall The call class that is to be muted.

Return Values
pxStreamFailed The link to the Telephony Server has failed.

pxClassEmpty The clsCall passed with this method does not point to a
valid class object.

pxInvalidClass The class object, clsCall, is not known and can not be
included in the list of active calls.

pxInvalidParameter One (or more) of the class device parameters is invalid.
For example, the CallerDN or CalledDN exceeds the
maximum number of characters (64) or is zero.

 Call Control Methods 90

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event
that is generated.

pxInvalidCallState The call class is valid and contains valid parameter
information however the call class is not in the correct
state. A DeviceMute method that is called where the call
class CallState parameter is not csActive will return this
error.

Return Events
DeviceMuted Fires if the attempt to mute the call was successful.

Error Event Values
Value_Out_Of_Range

A party specified is not part of the call or is in the wrong state. The selected party
can not be in the alerting state.

Generic_System_Resource_Availability

Switch capacity has been exceeded

Sample Code
Private Sub cmdDeviceMute_Click()

 px.DeviceMute cal

DeviceUnMute

 If Not cal Is Nothing Then

 End If

End Sub

Syntax: DeviceUnMute(ByVal clsCall As CallClass) As Long

Un-mutes the active call on the specified DN.

Long

Description:

Returns:

Parameters
clsCall The call class that is to be unmuted.

Return Values
 pxStreamFailed The link to the Telephony Server has failed.

pxClassEmpty The clsCall passed with this method does not point to a
valid class object.

The class object, clsCall, is not known and can not be
included in the list of active calls.

pxInvalidClass

 Call Control Methods 91

pxInvalidParameter One (or more) of the class device parameters is invalid.
For example, the CallerDN or CalledDN exceeds the
maximum number of character (64) or is zero length.

The call class is valid and contains valid parameter
information however the call class is not in the correct
state. A DeviceUnMute method that is called where the
call class CallState parameter is not csActive will return
this error.

invokeID Any number greater than 1000 that is returned from the
method is considered an invokeID. This invokeID will be
returned with the event confirmation or any error event
that is generated.

Return Events

pxInvalidCallState

DeviceUnMuted This event will fire if the attempt to unmute the call was
successful.

Sample Code
See example for DeviceMute.

 92

In This Chapter
CallActive... 93
CallAlerting.. 93
CallAnswered ... 94
CallDelivered.. 96
CallFailed ... 96
CallDiverted ... 97
CallHeld ... 97
CallListenHeld.. 98
CallListenUnHeld... 99
CallModified .. 99
CallNetworkReached.. 101
CallOriginated .. 101
CallPartyDropped... 102
CallPhoneActive... 104
CallPhoneNotActive... 104
CallQueued... 105
CallReleased... 106
CallUnHeld... 106
DeviceMuted .. 107
DeviceUnMuted ... 107

C H A P T E R 9

Call Control Events

This chapter contains information regarding the events that fire when methods
were called.

 Call Control Events 93

CallActive
Syntax:

 Description: Fires when a call appearance becomes active (goes
off-hook) and the user receives dial tone as part of an
outbound call. This event is also received as part of the
event sequence that results from a successful CallDial
method.

CallActive(ByVal clsCall As CallClass)

Response to method: None.

Parameters
clsCall The CallClass object that has been created as a result of

the device being taken off hook.

Class Settings
CallID The CallID method returns the Definity ECS generated

call ID for the new call.

CallIdentifier The CallIdentifier method returns the identifier for the
call that has been created. This identifier will be used
when the controlling application wishes to retrieve the
CallClass object via the ActiveCallClasses.Item
method, the ActiveCallClasses.ItemActiveCall method
or the ActiveCallClasses.ItemCallByCallAppearance
method.

The Definity ECS assigned UCID will be in the UCID
property if the Definity ECS has been configured to
supply it. As this is a new CallClass object, all other
class properties will contain default information.

DN The DN method returns the string property indicating
the device that has been taken off hook.

UCID

Sample Code
Private Sub px_CallActive(ByVal clsCall As CallClass)

 DoStatus "Off hook"

End Sub

CallAlerting
Syntax: CallAlerting(ByVal clsCall As CallClass, ByVal

EventCause As Long)

Description: Fires when the monitored DN has received a call
without being answered.

Response to method: None.

 Call Control Events 94

Parameters
clsCall CallClass object that has been created as a result of the

call being delivered to the monitored device.

Specifies the cause for this event. For event cause
values, refer to the enumeration enEventCause in the
PhoneX Enumerations Guide.

Class Settings

EventCause

DN The DN method returns the directory number that is
alerting. This DN is the station being controlled by the
PhoneX object.

CalledDN The CalledDN property contains the number that was
called by the incoming party.

If PhoneX has information about the number that was
dialed, eg. a monitored VDN, the name of that device
will be included in the CalledName property in the
CallClass object. This name is retrieved from the
Definity switch/MultiVantage server when the
controlling application starts using PhoneX.

The CallerDN property contains the available
information about the caller number. If the call is
internal, the number of the Definity
switch/MultiVantage server subscriber is displayed. If
the call is received from the public network and calling
line information is received (CLI, ANI), this is
displayed.

UUI

CalledName

CallerDN

CallerName If this information is available, the
Definity/MultiVantage name for the calling party is
displayed.

Any user to user information that is received with the
call is contained within this class property.

Sample Code
Private Sub px_CallAlerting(ByVal clsCall As CallClass,
ByVal EventCause As Long)

 DoStatus "Call Alerting"

End Sub

CallAnswered
Syntax:

Response to method: [CallAnswer]

CallAnswered(ByVal clsCall As CallClass, ByVal
AnsweredDN As String, ByVal EventCause As Long)

Description: Fires when a call originated from a monitored DN is
answered.

 Call Control Events 95

Parameters
clsCall The CallClass object that has been answered.

Specifies the cause for this event. For event cause
values, refer to the enumeration enEventCause in the
PhoneX Enumerations Guide.

AnsweredDN Specifies the device that joined the call.

EventCause

Usage Notes
This event fires when the call represented by the CallClass object is answered.
Information in the CallClass object remains unchanged from the CallAlerting
event with the exception of the CallState.

Class Settings
None.

Sample Code
This example enables/disables the appropriate buttons on the user interface and
updates the status bar.

 ‘This event is triggered when an incoming or
outgoing call is answered. Save the call identifier ‘of
the answered call. This identifier is used outside of this
event to retrieve this call

 ‘Enable and disable the appropriate functions on the
user interface

 cmdConference.Enabled = True

 fraTransfer.Enabled = True

 ‘Update status bar

Private Sub px_CallAnswered(ByVal clsCall As CallClass,
ByVal AnsweredDN As String)

 curCall = clsCall.CallIdentifier

 cmdAnswer.Enabled = False

 cmdHold.Enabled = True

 cmdHold.Caption = holdText

 cmdHangup.Enabled = True

 If clsCall.CallDirection = 0 Then

 DoStatus "Incoming call in progress..."

 Else

 DoStatus "Outgoing call in progress..."

 End If

End Sub

 Call Control Events 96

CallDelivered
Syntax: CallDelivered(ByVal clsCall As CallClass, ByVal

EventCause As Long)

Response to method: [CallDial, CallConference, CallTransfer,
CallDialDirectAgent, CallDialSupervisorAssist]

Parameters

Description: Fires when an outgoing call has been delivered to the
required destination.

clsCall The CallClass object representing the outbound call.

Specifies the cause for this event. For event cause
values, refer to the enumeration enEventCause in the
PhoneX Enumerations Guide.

EventCause

Class Settings
None.

Sample Code
Private Sub px_CallDelivered(ByVal clsCall As _

CallClass, ByVal EventCause As Long)

 DoStatus "The destination has been reached "

End Sub

CallFailed
Syntax: CallFailed(ByVal clsCall As CallClass)

 Description: Fires when an outbound call from the monitored device has
failed.

Response: [CallDial]

Parameters
clsCall The CallClass object representing the call that has failed.

Usage Notes
The clsCall parameter will indicate the CallClass object that has failed.

This event will fire when the destination of a call is busy or unavailable, or a call
receives reorder/denial treatment as described in the Definity ECS Programmer’s
Guide for CentreVu CTI.

Class Settings
None.

 Call Control Events 97

Sample Code
Private Sub px_CallFailed(ByVal clsCall As CallClass)

 DoStatus "The call has failed"

End Sub

CallDiverted
Syntax: CallDiverted(ByVal clsCall As CallClass, ByVal

NewDestination As String)

Fires when an incoming call was diverted to a new
destination successfully. This event fires for the deflected
call case and for the Send All Calls feature.

Response: [CallDivert]

Description:

Parameters
clsCall The CallClass object representing the call that was

diverted.

NewDestination The new DN that got the diverted call.

Class Settings
None.

Sample Code
Private Sub px_CallDiverted(ByVal clsCall As CallClass,
ByVal _ NewDestination As String)

 DoStatus "The call has been diverted to" +
NewDestination

 End Sub

CallHeld
Syntax:

Response to method: [CallHold]

CallHeld(ByVal clsCall As CallClass)

Description: Fires when a call has been placed on hold.

Parameters
clsCall The CallClass object representing the call that has been

held.

 Call Control Events 98

Usage Notes
This event fires to indicate the call represented by the CallClass object is placed
into the held state. This may be the result of the CallHold method being called or as
a result of the user activating the hold feature from the feature phone.

Class Settings
None.

Sample Code
Private Sub px_CallHeld(ByVal clsCall As CallClass)

 cmdHold.Caption = unholdText

 DoStatus "The call is on hold"

End Sub

CallListenHeld
Syntax:

Response to method: [CallListenHold]

Parameters

CallListenHeld(ByVal clsCall As CallClass, ByVal
selectedParty As String)

Description: Fires when the monitored device places a party on the
current call on listen hold.

clsCall The call class representing the call that was put on listen
hold.

SelectedParty The party on listen hold. The SelectedParty is not able
to hear the other member(s) on the call but the other
members can hear the SelectedParty.

Class Settings
None.

Sample Code
Private Sub px_CallListenHeld(ByVal clsCall As CallClass,
ByVal selectedParty As String)

 DoStatus "The call is on listen hold"

End Sub

 Call Control Events 99

CallListenUnHeld
Syntax: CallListenUnHeld(ByVal clsCall As CallClass, ByVal

selectedParty As String)

Description:

Response to method: [CallListenUnHold]

Parameters

Fires when a call has been retrieved from listen hold.

clsCall

The party retrieved from listen hold, giving them the
ability to hear the other member(s) on the call again.

The call class representing the call that was retrieve
from listen hold.

selectedParty

Class Settings
None.

Sample Code
Private Sub px_CallListenUnHeld(ByVal clsCall As
CallClass, ByVal selectedParty As String)

 DoStatus "The call is on listen unhold"

End Sub

CallModified

Syntax:

Response to method: [CallConference, CallTransfer, CallDivert]

CallModified(ByVal clsCall As CallClass)

Description: Fires when a call has been modified.

Parameters
clsCall The CallClass object that has been

modified.

Class Settings
CallModifiedMethod The reason the call was modified. For

reason values, refer to the enumeration
enModifyCause in the PhoneX
Enumerations Guide.

Added_To_Conference The device being monitored has been
added to a conference.

Party_Added_To_Conference Another party has been added to the
conference.

Transferred_To This DN has been transferred to another
party.

 Call Control Events 100

Transferred_From A call has been transferred to this DN, ie.
another party has completed the transfer
passing the original caller to this DN.

A call from this DN to party B, has been
diverted (CallDivert) at party B to another
destination.

Party_Connection_State_Change The connection state of another party on
the call has changed. For example, during a
call between this DN and party B, party B
has placed their call appearance on hold.

Connection states of all parties can be
determined from the MemberList property
in the CallClass object.

The talk state of another party on the call
has changed. For example, during a call
between this DN and party B, party B has
placed their connection on listen hold.

Connection states of all parties can be
determined from the MemberList property
in the CallClass object.

Sample Code

Diverted_To

Party_Talk_State_Change

Private Sub px_CallModified(ByVal clsCall As CallClass)

 ‘Update the status bar with the reason the call was
modified

 NMembers =
clsCall.MemberList.CurrentNumberOfMembers

 DoStatus "You have been added to a " _

 Case 2: ‘Count the total number of calls in
conference

 DoStatus "Incoming call (" + clsCall.CallerDN
+ _

 ") has been transferred from " +
clsCall.OtherDN

 Dim nMembers As Integer

 Select Case clsCall.CallModifiedMethod

 Case 1: ‘Add party to conference call

 + "conference call with " + Str(nMembers) +
" members"

 DoStatus Str(nMembers) + " calls in
conference"

 cmdDrop.Enabled = True

 Case 3: ‘Transfer call to another device

 DoStatus "Your call has been transferred To
" + clsCall.NewDN

 Case 4: ‘Transfer call from another device

 Call Control Events 101

 Case 5: ‘Divert call from the called device

 Case 7:

 DoStatus "Your call has been diverted to " +
clsCall.OtherDN

 Case 6:

 DoStatus "Your connection state has changed."

 DoStatus "Your talk state has changed."

 End Select

End Sub

CallNetworkReached
Syntax:

Description: Fires when a call reaches the telephone network.

Response to method: [CallDial]

CallNetworkReached(ByVal clsCall As CallClass)

Parameters
clsCall The CallClass object that has reached the network

interface

Usage Notes
The NetworkReached event will fire to indicate one of the following events:

 A non-ISDN call has cut through the switch boundary to another network
 An ISDN call is leaving the ISDN network.

A NetworkReached event will never fire for a call to a device that is directly
connected to the Definity switch/MultiVantage server.

Multiple NetworkReached events may be received for a single call.

Class Settings
None.

Sample Code
Private Sub px_CallNetworkReached(ByVal clsCall As
CallClass)

 DoStatus "Network Reached Event"

End Sub

CallOriginated
Syntax: CallOriginated(ByVal clsCall As CallClass)

 Call Control Events 102

Description:

Response to method: [CallDial]

Fires when a call attempt has been originated.

Parameters
clsCall The CallClass object that has been originated.

Usage Notes
The CallOriginated event is generated as follows:

 When the station user completes dialing a valid number
 When the CallDial is invoked and the switch determines that a call is to be

attempted.

The event will not be triggered when a call is aborted because an invalid number
has been provided or because the device DN that PhoneX is controlling is not
allowed to originate the call (via COR).

Class Settings
None.

Sample Code
Private Sub px_CallOriginated(ByVal clsCall As Object)

 cmdHangup.Enabled = True

 DoStatus "Outgoing call in progress"

 ‘This event is triggered once an outgoing call is
placed. Save the call identifier of the answered ‘call.
This identifier is used outside of this event to retrieve
this call

 curCall = clsCall.CallIdentifier

 cmdAnswer.Enabled = False

 cmdConference = False

End Sub

CallPartyDropped
Syntax: CallPartyDropped(ByVal clsCall As CallClass, ByVal

DroppedDN As String)

Description: Fires when the requested party has been dropped from a
call. This will occur if the CallPartyDrop method is
called and the outcome is successful.

Response to method: [CallPartyDrop]

Parameters
clsCall The CallClass object that has had the party removed

from it.

 Call Control Events 103

The DN that has left the call.

Class Settings

DroppedDN

None.

Sample Code
Different actions are performed depending on the current call state.

Private Sub px_CallPartyDropped(ByVal clsCall _

 Nmembers =
clsCall.MemberList.CurrentNumberOfMembers

 Select Case clsCall.CallState

 cmdAnswer.Enabled = False

 cmdMakeCall.Enabled = True

 Select Case nMembers

 Case Is > 2: ‘Conference call in progress

 DoStatus Str(nMembers) + " calls in
conference"

 Case 2: ‘Enable and disable the appropriate
functions on the user interface

 As CallClass, ByVal DroppedDN As String)

 ‘This event is triggered when a call is terminated
or a party is dropped from a conference call

 Dim Nmembers As Integer

 Case 0: ‘Enable and disable the appropriate
functions on the user interface for the Idle case

 cmdHold.Enabled = False

 cmdHangup.Enabled = False

 fraTransfer.Enabled = False

 cmdConference = False

 DoStatus "Call terminated"

 Case 3: ‘Respond according to the number of devices
connected to the current call for the ‘connected case

 cmdDrop.Enabled = False

 cmdHangup.Enabled = True

 Call Control Events 104

 If clsCall.CallDirection = 0 Then

CallPhoneActive

 DoStatus "Incoming call in
progress"

 Else

 DoStatus "Outgoing call in
progress"

 End If

 End Select

 End Select

End Sub

Syntax:

Description: Fires when the monitored DN is set to Busy Indicator
(Basic) mode and the phone returns events of type
CallActive, CallAlerting or CallAnswered.

Response to method: [CallActive, CallAlerting, CallAnswered]

Parameters

CallPhoneActive(ByVal DN As String)

DN The station that is monitored as a busy indicator that
received an Active, Alerting and/or Answered event.

Class Settings
None.

Sample Code
Private Sub px_CallPhoneActive(ByVal DN As String)

 DoStatus "Phone Is Off Hook"

End Sub

CallPhoneNotActive

Syntax: CallPhoneNotActive(ByVal DN As String)

 Description: Fires when the monitored DN is set to Busy Indicator
(Basic) mode and the phone returns events for
CallRelease or CallPartyDropped.

Response to method: [CallReleased, CallPartyDropped]

 Call Control Events 105

Parameters
DN The station that is monitored as a busy indicator that

received the CallReleased and/or CallPartyDropped
event.

Class Settings
None.

Sample Code
Private Sub px_CallPhoneNotActive(ByVal DN As String)

 DoStatus "Phone Is On Hook"

End Sub

CallQueued
Syntax:

Fires when a call has been queued to a split or skill.

Response to method: [CallDial]

CallQueued(clsCall As CallClass, queue As String,
numberQueued As Long)

Description:

Parameters
clsCall The call class representing the call that was put in the

queue.

 queue Specifies the queuing device to which the call has
queued. This is the extension of the ACD split to which
the call queued.

numberQueued Specifies how many calls are queued to the queue
device. This number includes the current call and
excludes all direct-agent calls in the queue.

Usage Notes
 The CallQueued event fires to indicate when a call is delivered or redirected to

a hunt group or ACD split and the call queues. It also fires if the call queues to
the same split with different priority.

 A CallQueued event never fires if a call queues to an announcement, vector
announcement or trunk group. It also never fires if a call queues to the same
ACD split at the same priority.

Sample Code
Private Sub px_CallQueued(clsCall As CallClass, queue As
String, numberQueued As Long)

 DoStatus "CallQueued Event"

End Sub

 Call Control Events 106

CallReleased
Syntax:

Fires when a call on a monitored DN is released.

Response to method: [CallRelease]

Parameters

CallReleased(ByVal clsCall As CallClass,ByVal
EventCause As Long)

Description:

clsCall The call class representing the call that was released.

Specifies the cause for this event. For event cause
values, refer to the enumeration enEventCause in the
PhoneX Enumerations Guide.

EventCause

Class Settings
None.

Code Example
Private Sub px_CallReleased(ByVal clsCall As CallClass,
ByVal EventCause As Long)

 DoStatus "The calls have been released"

End Sub

CallUnHeld
Syntax:

 Description: Fires when a call is returned from a held state to an
active state. Retrieving a call can be done manually at
the station by selecting the call appearance or by issuing
the CallUnHold method.

Response to method: [CallUnHold]

Parameters

CallUnHeld(ByVal clsCall As CallClass)

clsCall The call that has been taken off hold.

Class Settings
None.

 Call Control Events 107

Sample Code
Private Sub px_CallUnHeld(ByVal clsCall As CallClass)

 CmdHold.Caption = holdText

DeviceMuted

 If clsCall.CallState = 3 Then

 DoStatus "Call continued..."

 End If

End Sub

Syntax:

Description: This event occurs when the DeviceMute method was
successful.

Response to method: [DeviceMute]

DeviceMuted(ByVal DeviceDN As String)

Parameters
DeviceDN The DN that was muted.

Class Settings
None.

Sample Code
Private Sub px_DeviceMuted(ByVal DeviceDN As String)

DeviceUnMuted

 DoStatus "Device " + DeviceDN + " has been Muted."

End Sub

Syntax:

Response to method: [DeviceUnMute]

DeviceUnMuted(ByVal DeviceDN As String)

Description: This event occurs when the DeviceUnMute method was
successful.

Parameters
DeviceDN The DN that was unmuted.

Class Settings
None.

 Call Control Events 108

Sample Code
Private Sub px_DeviceUnMuted(ByVal DeviceDN As String)

 DoStatus "Device " + DeviceDN + " has been UnMuted."

End Sub

 109

This chapter contains the methods that control the telephony features programmed
for the phone.

In This Chapter
SetForward ... 110
SetSendAllCalls.. 110
SetBillingRate .. 111
SetMessageWaiting .. 112

C H A P T E R 1 0

Set Feature Methods

 Set Feature Methods 110

SetForward
Syntax:

Activates the Call Forward feature for the DeviceDN.

Long

Parameters

SetForward(ByVal clsDevice As DeviceClass) As Long

Description:

Returns:

clsDevice The device class object that will receive the Call Forward
status.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
SetForwardReturn The device specified in the device object has been

set/unset for the Call Forward feature.

Error Event Values
Invalid_CSTA_Device_Identifier

An invalid device identifier has been specified in the device class for either the DN
or the forwarding DN.

Generic_Subscribed_Resource_Availability

Service or option not subscribed. Forwarding detection has been requested but is
not enabled on the switch.

Sample Code
Private Sub cmdSetForward_Click()

 Dim lRtn As Long

End Sub

 lRtn = px.SetForward(clsDevice)

SetSendAllCalls
Syntax:

Description: Activates the Send All Calls feature on the specified DeviceDN.

Returns:

SetSendAllCalls(ByVal clsDevice As DeviceClass) As Long

Long

Parameters
clsDevice The device class that will receive the Send All Calls

status. This will divert all calls to a specified DN as
programmed in the switch.

 Set Feature Methods 111

 Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
SetSendAllCallsReturn The device specified in the device object has been

set/unset for the Send All Calls feature.

Error Event Values
Invalid_CSTA_Device_Identifier

Service or option not subscribed. Send All Calls detection has been requested but is
not enabled on the switch.

Sample Code
Private Sub cmdSetSendAllCalls(ByVal clsDevice As
DeviceClass)

 Dim lRtn As Long

End Sub

 lRtn = px.SetSendAllCalls(clsDevice)

SetBillingRate
Syntax:

Activates the Billing Rate feature (Advice of Charge)
for the particular call. This feature can be requested
when the call has been answered or before the call is
cleared.

SetBillingRate(ByVal clsCall As CallClass) As Long

Description:

Returns: Long

Parameters
clsCall The call class that is to receive the Billing Rate status.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
SetBillingRateReturn The call specified in the call object has been set/unset

for billing rate information.

Error Event Values
Invalid_CSTA_Connection_Identifier

The connection identifier for the call is invalid.

 Set Feature Methods 112

Invalid_Object_State

The request was specified before the call was answered.

Generic_Subscribed_Resource_Availability

Code Example

Value_Out_Of_Range

An invalid value is specified in the request.

Resource_Busy

The switch limit for unconfirmed request has been reached.

Service or option not subscribed. Set billing rate detection has been requested but is
not enabled on the switch.

Private Sub cmdSetBillingRate_Click()

 Dim lRtn As Long

End Sub

 lRtn = px.SetBillingRate(clsCall)

SetMessageWaiting
Syntax: SetMessageWaiting(ByVal clsDevice As DeviceClass) As Long

Description:

Long

Parameters

Activates the Message Waiting feature on the monitored DN.

Returns:

clsDevice The device class that will receive the Message
Waiting status.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
SetMessageWaitingReturn The Message Waiting feature for the device

specified in the device class has been set/unset.

Error Event Values
Invalid_CSTA_Device_Identifier

The device identifier specified is invalid.

 Set Feature Methods 113

Sample Code
Private Sub cmdSetMessageWaiting_Click()

End Sub

 Dim lRtn As Long

 lRtn = px.SetMessageWaiting(clsDevice)

 114

In This Chapter
SetForwardReturn .. 115
SetSendAllCallsReturn... 115
SetBillingRateReturn.. 116
SetMessageWaitingReturn ... 116

C H A P T E R 1 1

Set Feature Events

This chapter contains the events that PhoneX will return from setting features.

 Set Feature Events 115

SetForwardReturn
Syntax: SetForwardReturn(ByVal clsDevice As DeviceClass)

Response to method: [SetForward]

Parameters

Description: Fires when the Call Forward feature has been
set/unset.

clsDevice The device that receives the SetForward method.

Class Settings
StatusFWD This property is of type Boolean. It will be set to True

if the Call Forward feature is activated and False if it is
turned off.

Sample Code
Private Sub px_SetForwardReturn(ByVal clsDevice _

 Else

 End If

SetSendAllCallsReturn

 As DeviceClass)

 If clsDevice.StatusFWD = True Then

 LedFWD.BackColor = vbGreen

 LedFWD.BackColor = vbGray

End Sub

Syntax:

Response to method: [SetSendAllCalls]

SetSendAllCallsReturn(ByVal clsDevice As
DeviceClass)

Description: Fires when the Send All Calls feature has been
set/unset.

Parameters
clsDevice The device that receives the SetSendAllCalls method.

Class Settings
StatusSAC This property is of type Boolean. It will be set to True

if the Send All Calls feature is activated and False if it
is turned off.

 Set Feature Events 116

Sample Code
Private Sub px_SetSendAllCallsReturn(ByVal _

 clsDevice As DeviceClass)

 LedSAC.BackColor = vbGreen

 End If

SetBillingRateReturn

 If clsDevice.StatusSAC = True Then

 Else

 LedSAC.BackColor = vbGray

End Sub

Syntax: SetBillingRateReturn(ByVal clsDevice As DeviceClass)

Fires when the Billing Rate feature (Advice of Charge)
has been set/unset.

Response to method: [SetBillingRate]

Parameters

Description:

clsDevice The device class that receives the SetBillingRate
method.

Class Settings
BillingRate This property is of type string. This will display the

billing rate for the call in progress.

Sample Code
Private Sub px_SetBillingRateReturn(ByVal clsDevice As
DeviceClass)

 DoStatus "Current Charge= " + _

SetMessageWaitingReturn

 clsDevice.BillingRate + "per minute"

End Sub

Syntax: SetMessageWaitingReturn(ByVal clsDevice As
DeviceClass)

Fires when the Message Waiting feature has been
set/unset.

Description:

 Set Feature Events 117

Response to method: [SetMessageWaiting]

Parameters
clsDevice The device that receives the SetMessageWaiting

method.

Class Settings
StatusMWT This property is of type Boolean. It will be set to True

if the Message Waiting feature is activated and False if
it is turned off.

Sample Code
Private Sub px_SetMessageWaitingReturn(ByVal _

 clsDevice As DeviceClass)

 Else

End Sub

 If clsDevice.StatusMWT = True Then

 LedMWT.BackColor = vbRed

 LedMWT.BackColor = vbGray

 End If

 118

In This Chapter
AgentLogin... 119
AgentLogout... 120
AgentSetState ... 121

C H A P T E R 1 2

Agent Methods

This chapter contains the methods that may be used in order to agent login or
logout. The state changes may also be set using these methods.

 Agent Methods 119

AgentLogin
Syntax:

Returns: Long

AgentLogin(ByVal clsAgent As AgentClass) As Long

Description: Logs an agent into a specified split/skill at the specified
DN.

Parameters
clsAgent The agent class that contains the relevant information to

log in an agent.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
AgentLoggedIn

Error Event Values

This event will fire when the agent login performed was
successful.

Generic_Unspecified

An attempt to log in the agent to a split/skill was unsuccessful due to the agent not
being a member, or an attempt to login with an invalid password was performed.

An attempt to login an agent that was already logged in.

One or all of the DN, SplitSkill and AgentID fields are empty.

Invalid_CSTA_Device_Identifier

The agent station is in maintenance busy or out of service.

Generic_System_Resource_Availability

The request cannot be completed due to lack of available switch resources.

An attempt to log in an ACD agent that is currently on a call.

Generic_Operation

Object_Not_Known

The DN specified is invalid

Generic_State_Incompatibility

Invalid_Object_State

The agent is already logged into another split.

Resource_Busy

 Agent Methods 120

Sample Code
Private Sub cmdAgentLogin_Click()

 Dim lRtn As Long

 clsAgent.AgentID = “4567”

 clsAgent.DN = “5054”

 lRtn = px.AgentLogin(clsAgent)

End Sub

AgentLogout

 Dim clsAgent As AgentClass

 Set clsAgent = px.AgentClasses.Add()

Syntax: AgentLogout(ByVal clsAgent As AgentClass) As Long

Description:

Returns: Long

Parameters

Logs an agent out of a specified split/skill at the
specified DN.

clsAgent The agent class that contains information to log out an
agent from a split/skill.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Usage Notes
The AgentIdentifier is required to retrieve the appropriate AgentClass that relates
to the agent to be logged out. Set the AgentMode to amLogOut.

Return Events (in order fired)
AgentLoggedOut This event fires when the agent logout method was

performed successfully.

Error Event Values
Generic_Unspecified

An attempt to log out the agent from a split/skill was unsuccessful as the agent was
already logged out.

 Agent Methods 121

Sample Code
Private Sub cmdAgentLogout_Click()

 Dim clsAgent As AgentClass

 Dim lRtn As Long

 Set clsAgent = px.AgentClasses.Item(agentIdentTxt)

 clsAgent.AgentMode = amLogOut

 lRtn = px.AgentLogout(clsAgent)

 End Sub

AgentSetState
Syntax: AgentSetState(ByVal clsAgent As AgentClass) As Long

Sets the agent state for the specified monitored DN.

Returns:

Parameters

Description:

Long

clsAgent

Return Values

The agent class containing the information of the state
change to be made.

For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
AgentStateReturn This event fires when the AgentSetState method was

successful.

Error Event Values
Value_Out_Of_Range

The WorkMode is invalid for the provided AgentMode.

The feature is not available for the particular SplitSkill.

Invalid_Object_Type

The reason code was specified, but the agent work mode is not in
WM_AUX_WORK or the agent mode is not amLogOut as defined by the
enumerations enAgentWorkMode and enAgentMode in the PhoneX Enumerations
Guide.

Invalid_Feature

 Agent Methods 122

Sample Code
Private Sub cmdAgentSetState_Click()

 Dim lRtn As Long

 Dim agtClass As AgentClass

 Set agtClass = px.AgentClasses.Item(agtIdentTxt)

 If Not agtClass Is Nothing Then

 AgtClass.AgentMode = enAgentMode.amNotReady

 AgtClass.WorkMode = enAgentMode.wmAux

 lRtn = px.AgentSetState(agtClass)

 End If

End Sub

 123

In This Chapter
AgentLoggedIn... 124
AgentLoggedOut .. 125
AgentStateReturn ... 125

C H A P T E R 1 3

Agent Events

This chapter contains the agent events that return when the login, logout or state
changes of an agent are successful.

 Agent Events 124

AgentLoggedIn
Syntax:

Response to method: [AgentLogin]

AgentLoggedIn(ByVal clsAgent As AgentClass)

Description: Fires when an agent logs into a split/skill at a
monitored DN.

Parameters
clsAgent The AgentClass object that has had the log in.

Class Settings
AgentMode The agent mode. For agent mode values, refer to the

enumeration enAgentMode in the PhoneX
Enumerations Guide. The value displayed after a
successful login is amLogIn.

The agent work mode. For work mode values, refer to
the enumeration enAgentWorkMode in the PhoneX
Enumerations Guide. The value displayed after a
successful login is wmAUX for auxiliary work mode.

WorkMode

SplitAgentsLoggedIn This will display the number of splits the agent has
logged in to for non-EAS case.

Sample Code
Private Sub px_AgentLoggedIn(ByVal clsAgent As
AgentClass)

 ‘Change the states

 If clsAgent.AgentMode = enAgentMode.amLogIn Then

 LedINOUT.BackColor = vbGreen

 Select Case clsAgent.WorkMode

 Case enWorkMode.wmAUX:

 LedAUX.BackColor = vbGreen

 LedACW.BackColor = vbGray

 LedAIn.BackColor = vbGray

 LedMIn.BackColor = vbGray

 Case enWorkMode.wmACW

 LedAUX.BackColor = vbGray

 LedACW.BackColor = vbGreen

 LedAIn.BackColor = vbGray

 LedMIn.BackColor = vbGray

 End Select

 End If

End Sub

 Agent Events 125

AgentLoggedOut
Syntax:

Response to method: [AgentLogout]

AgentLoggedOut(ByVal clsAgent As AgentClass)

Description: Fires when an agent logs out of a split/skill at a
monitored DN.

Parameters
clsAgent The AgentClass object that has had the log off.

Class Settings
AgentMode The agent mode. For agent mode values, refer to the

enumeration enAgentMode in the PhoneX
Enumerations Guide. The value displayed after a
successful logout is amLogOut.

SplitAgentsLoggedIn This displays the number of splits the agent has logged
out for Non-EAS.

Sample Code
Private Sub px_AgentLoggedOut(ByVal clsAgent As
AgentClass)

 ‘Change the state to log out

 If clsAgent.AgentMode =EnAgentMode.amLogOut Then

 LedINOUT.BackColor = vbGray

 LedAUX.BackColor = vbGray

 LedACW.BackColor = vbGray

 LedAIn.BackColor = vbGray

 LedMIn.BackColor = vbGray

 End If

End Sub

AgentStateReturn
Syntax:

Response to method: [AgentSetState]

AgentStateReturn(ByVal clsAgent As AgentClass)

Description: Fires after a state change has occurred for an agent.

Parameters
clsAgent The AgentClass object that has had the change in state.

 Agent Events 126

Class Settings
AgentMode The agent mode. For agent mode values, refer to the

enumeration enAgentMode in the PhoneX
Enumerations Guide.

The agent work mode. For work mode values, refer to
the enumeration enAgentWorkMode in the PhoneX
Enumerations Guide.

WorkMode

Sample Code
Private Sub px_AgentStateReturn(ByVal clsAgent As
AgentClass)

 ‘Change the states

 If clsAgent.AgentMode = enAgentMode.amReady Then

 LedINOUT.BackColor = vbGreen

 Select Case clsAgent.WorkMode

 Case enWorkMode.wmAUX:

 LedAUX.BackColor = vbGreen

 LedACW.BackColor = vbGray

 LedAIn.BackColor = vbGray

 LedMIn.BackColor = vbGray

 Case enWorkMode.wmACW

 LedAUX.BackColor = vbGray

 LedACW.BackColor = vbGreen

 LedAIn.BackColor = vbGray

 LedMIn.BackColor = vbGray

 End Select

 End If

End Sub

 127

In This Chapter
QueryACDSplit .. 128
QueryAgentLogin... 128
QueryAgentState .. 129
QueryCallClassifier .. 130
QueryDeviceInfo .. 131
QuerySendAllCalls... 131
QueryForward .. 132
QueryMessageWaiting ... 133
QueryTimeOfDay... 133
QueryTrunkGroup .. 134
QueryStationStatus ... 135
QueryUCID .. 136

C H A P T E R 1 4

Query Methods

This chapter includes the PhoneX methods that perform querying.

 Query Methods 128

QueryACDSplit
Syntax:

Description: Queries an ACD split to find out the number of logged-in agents,
number of agents available to receive calls, and the number of
calls in queue. Note: The number of queued calls does not
include direct agent calls.

QueryACDSplit(ByVal DN As String) As Long

Returns: Long

Parameters
DN This parameter must be a valid ACD split extension in

order to perform this query.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events
QueryACDSplitReturn Returns with updated information on the agent through

the agent class.

Error Event Values
Invalid_CSTA_Device_Identifier

The device specified in DN is invalid.

Sample Code
 Private Sub cmdQueryACDSplit_Click()

 Dim lRtn As Long

 lRtn = px.QueryACDSplit(mySplitDN)

End Sub

QueryAgentLogin
Syntax: QueryAgentLogin(ByVal DN As String) As Long

Description: Requests the extensions numbers of each agent logged in to an
ACD split.

Returns: Long

Parameters
DN This parameter must be a valid ACD split extension

in order to perform this query.

 Query Methods 129

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events
QueryAgentLoginReturn Returns with updated information on the agent

through the agent class.

Error Event Values
Invalid_CSTA_Device_Identifier

The device specified in DN is invalid.

Sample Code
Private Sub cmdQueryAgentLogin_Click()

 Dim lRtn As Long

 lRtn = px.QueryAgentLogin(mySplitDN)

End Sub

QueryAgentState
Syntax: QueryAgentState(ByVal clsAgent As AgentClass) As Long

Description: Requests the agent status of the specified DN for the specified
split/skill.

Returns: Long

Parameters
clsAgent The agent class that is to be queried for its agent

state.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events
QueryAgentStateReturn Returns with updated information on the agent

through the agent class.

Error Event Values
Invalid_CSTA_Device_Identifier

The split/skill specified in the agent class is invalid.

 Query Methods 130

Sample Code
Private Sub cmdQueryAgentState_Click()

 Dim lRtn As Long

 Dim agtClass As AgentClass

 Set agtClass = px.AgentClasses.Item(agentIdentTxt)

 If Not agtClass Is Nothing Then

 lRtn = px.QueryAgentState(agtClass)

 End If

End Sub

QueryCallClassifier
Syntax:

Description:

QueryCallClassifier() As Long

Requests the number of “idle” and “in-use” ports (eg. TN744).
The “in-use” number is a snapshot of the call classifier port
usage.

Returns: Long

Parameters
None.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events
QueryCallClassifierReturn Returns with updated information on number of

busy and idle call classifiers.

Error Event Values
None.

Sample Code
Private Sub cmdQueryCallClassifier_Click()

 Dim lRtn As Long

 lRtn = px.QueryCallClassifier()

End Sub

 Query Methods 131

QueryDeviceInfo
Syntax: QueryDeviceInfo(ByVal DN As String) As Long

Description: Requests information about the class and type of device. The
class is one of voice, data, image or other. The type attribute is
one of station, ACD, ACD Group or other.

Returns: Long

Parameters
DN This parameter contains the on-switch station

extension.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
QueryDeviceInfoReturn Returns with information that relates to the DN that

was queried.

Error Event Values
Invalid_CSTA_Device_Identifier

The device that was specified in the DN parameter is invalid.

Sample Code
Private Sub cmdQueryDeviceInfo_Click()

 Dim lRtn As Long

 lRtn = px.QueryDeviceInfo(theDNTxt)

End Sub

QuerySendAllCalls
Syntax: QuerySendAllCalls(ByVal DN As String) As Long

Requests the status of the Send All Calls feature for DN. The
feature will be expressed as False if the DN does not have a
coverage path.

Long

Description:

Returns:

Parameters
DN This parameter contains the on-switch station

extension that supports the Send All Calls feature.

 Query Methods 132

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
QuerySendAllCallsReturn Returns the status of the Send All Calls feature for

the queried DN.

Error Event Values
Invalid_CSTA_Device_Identifier

The device that was specified in the DN parameter is invalid.

Sample Code
Private Sub cmdQuerySendAllCalls_Click()

 Dim lRtn As Long

 lRtn = px.QuerySendAllCalls(myDN)

 End Sub

QueryForward
Syntax: QueryForward(ByVal DN As String) As Long

Description: Requests the status of the Call Forward feature for DN.

Returns: Long

Parameters
DN This parameter contains the on-switch station

extension that supports the Call Forward feature.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
QueryForwardingReturn Returns the status of the Call Forward feature for the

queried DN.

Error Event Values
Invalid_CSTA_Device_Identifier

The device that was specified in the DN parameter is invalid.

 Query Methods 133

Sample Code
Private Sub cmdQueryForward_Click()

 Dim lRtn As Long

 lRtn = px.QueryForward(myDN)

End Sub

QueryMessageWaiting
Syntax: QueryMessageWaiting(ByVal DN As String) As Long

Description: Requests the status of the Message Waiting feature for the DN.

Returns: Long

Parameters
DN This parameter contains the on-switch station

extension that supports the Message Waiting
feature.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
QueryMessageWaitingReturn Returns the status of the Message Waiting

feature for the DN that was queried and the
application that turn the indicator on.

Error Event Values
Invalid_CSTA_Device_Identifier

The device that was specified in the DN parameter is invalid.

Sample Code
Private Sub cmdQueryMessageWaiting_Click()

 Dim lRtn As Long

 lRtn = px.QueryMessageWaiting(myDN)

End Sub

QueryTimeOfDay
Syntax: QueryTimeOfDay() As Long

 Query Methods 134

Description:

Parameters

Requests the current time and date from the switch. The time is
in 24-hour format and includes minutes and seconds. The date
will return with year, month and day values.

Returns: Long

None.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
QueryTimeOfDayReturn Returns the year, month, day, hour, minutes and

seconds.

Error Event Values
None.

Sample Code
Private Sub cmdQueryTimeOfDay_Click()

 Dim lRtn As Long

 lRtn = px.QueryTimeOfDay()

End Sub

QueryTrunkGroup
Syntax:

Description: Requests the status of the specified trunk group <TAC>.
Requests the number of idle trunks and the number of in-use
trunks. The sum of the idle and in-use trunks provides the
number of trunks in service.

QueryTrunkGroup(ByVal DN As String) As Long

Returns: Long

Parameters
DN This parameter specifies a valid trunk group

access code.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
QueryTrunkGroupReturn Returns the status of used and idle trunks for the

trunk group access code supplied.

 Query Methods 135

Error Event Values
Invalid_CSTA_Device_Identifier

The DN was specified with an invalid device identifier.

Sample Code
Private Sub cmdQueryTrunkGroup_Click()

 Dim lRtn As Long

 lRtn = px.QueryTrunkGroup(trunkDN)

End Sub

QueryStationStatus
Syntax: QueryStationStatus(ByVal DN As String) As Long

Description: Requests information on the busy or idle state of the specified
station DN. A busy state relates to an active call on the station.
The idle state is returned if the station is not on any call.

Returns: Long

 Parameters
DN This parameter specifies a valid station device.

 Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
QueryStationStatusReturn Returns the idle and/or busy state for the station.

Error Event Values
Invalid_CSTA_Device_Identifier

The DN was specified with an invalid device identifier.

Sample Code
Private Sub cmdQueryStationStatus_Click()

 Dim lRtn As Long

 lRtn = px.QueryStationStatus(stationDN)

End Sub

 Query Methods 136

QueryUCID
Syntax:

Description:

QueryUCID(ByVal CallID As Long) As Long

Requests the UCID (Universal Call ID) for the Call ID
associated with the call. This method may be called at anytime
during the lifetime of the call.

Returns: Long

Parameters
CallID This parameter specifies a valid call ID that is

currently on a call.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
QueryUCIDReturn Returns the UCID for the call.

Error Event Values
Invalid_CSTA_Call_Identifier

The specified CallID is invalid.

Invalid_Feature

The switch software does not support this functionality. The switch software
version may be earlier than Release 6.

Sample Code
Private Sub cmdQueryUCID_Click()

 Dim lRtn As Long

 lRtn = px.QueryUCID(currCallID)

End Sub

 137

In This Chapter
QueryACDSplitReturn ... 138
QueryAgentLoginReturn.. 138
QueryAgentStateReturn ... 139
QueryCallClassifierReturn ... 140
QueryDeviceInfoReturn ... 140
QueryTimeOfDayReturn.. 141
QueryTrunkGroupReturn ... 142
QueryStationStatusReturn .. 143
QuerySendAllCallsReturn.. 144
QueryForwardingReturn... 144
QueryMessageWaitingReturn .. 145
QueryUCIDReturn ... 146

Query Events
C H A P T E R 1 5

This chapter contains information related to the events that return when the
querying is successful.

 Query Events 138

QueryACDSplitReturn
Syntax:

Description:

Response to method: [QueryACDSplit]

QueryACDSplitReturn(ByVal clsAgent As AgentClass)

Returns ACD split/skill information.

Parameters
clsAgent The AgentClass object that contains the updated

information as a result of the query.

Class Settings
SplitCallsInQueue This contains the number of calls waiting in queue.

SplitAgentsAvailable The number of agents currently available to receive
calls.

SplitAgentsLoggedIn The number of agents currently logged into this
split/skill.

Sample Code
Private Sub px_QueryACDSplitReturn(ByVal clsAgent As
AgentClass)

 DoStatus "Calls Waiting = " +
clsAgent.SplitCallsInQueue

 DoStatus "Available Agents = " +
clsAgent.SplitAgentsAvailable

 DoStatus "Agents Logged In = " +
clsAgent.SplitAgentsLoggedIn

End Sub

QueryAgentLoginReturn
Syntax:

Response to method: [QueryAgentLogin]

QueryAgentLoginReturn(ByVal clsAgent As
AgentClass)

Description: Returns the extension number for each agent logged
in to a split/skill.

Parameters
clsAgent The AgentClass object that contains the updated

information as a result of the query.

Class Settings
DN This contains the extension number of the agent

logged in to this split/skill.

 Query Events 139

SplitSkill The split/skill extension number that the agent was
logged in to.

Sample Code
Private Sub px_QueryAgentLoginReturn(ByVal clsAgent As
AgentClass)

 DoStatus "Agent DN = " + clsAgent.DN

End Sub

 DoStatus "Agent Split/Skill = " +
clsAgent.SplitSkill

QueryAgentStateReturn
Syntax: QueryAgentStateReturn(ByVal clsAgent As

AgentClass)

Response to method: [QueryAgentState]

Description: Returns the agent status of the specified DN for the
specified split/skill.

Parameters
clsAgent The AgentClass object that contains the updated

information as a result of the query.

Class Settings
AgentState The agent state. For agent state values, refer to the

enumeration enAgentState in the PhoneX
Enumerations Guide.

WorkMode The agent work mode. For agent mode values, refer to
the enumeration enAgentWorkMode in the PhoneX
Enumerations Guide. This field is only defined if the
AgentState value is asReady.

Sample Code

ReasonCode The reason code for the appropriate agent state. The
meanings for the reason should be defined in the
controlling application.

Private Sub px_QueryAgentStateReturn(ByVal clsAgent As
AgentClass)

 DoStatus "Agent State = " +
Cstr(clsAgent.AgentState)

 DoStatus "Agent WorkMode = " +
Cstr(clsAgent.WorkMode)

 DoStatus "Agent ReasonCode = " +
Cstr(clsAgent.ReasonCode)

End Sub

 Query Events 140

QueryCallClassifierReturn
Syntax:

Response to method: [QueryCallClassifier]

QueryCallClassifierReturn(ByVal Busy As Long,
ByVal Idle As Long)

Description: Returns the number of “idle” and “in-use” ports. The
“in-use” number is a snapshot of the call classifier
port usage.

Parameters
Busy

Class Settings

The number of “in-use” ports.

 Idle The number of “idle” ports.

None.

 Sample Code
Private Sub px_QueryCallClassifierReturn(ByVal _

 DoStatus "Busy Ports = " + Cstr(Busy)

 Busy As Long, ByVal Idle As Long)

 DoStatus "Idle Ports = " + Cstr(Idle)

End Sub

QueryDeviceInfoReturn
Syntax:

Description:

Response to method: [QueryDeviceInfo]

QueryDeviceInfoReturn(ByVal DN As String, ByVal
DevType As Long, ByVal Class As Long, ByVal
ExtnClass As Long, ByVal AssocDN As String, ByVal
AssocClass As Long, ByVal Name As String)

Returns information about the device DN.

Parameters
DN The specified DN queried for information.

DevType The device type for the DN. This could be any one of
station, ACD, ACD Group or other.

Class The class contains one of the following categories that
are void, data, image or other.

ExtnClass The G3 extension class for the device queried.

 Query Events 141

The G3 extension class for the AssocDN.

AssocDN If the device specified in the request is a physical
device of a logical agent who is logged in, the logical
ID of that agent is returned in this parameter.

If the device specified in the request is the logical ID of
a logged-in agent, the physical device ID of that agent
is returned in this parameter. Otherwise, a null string is
returned.

AssocClass

Name This field contains the information related to the name
of the device specified as programmed in the switch.

Class Settings
None.

Sample Code
Private Sub px_QueryDeviceInfoReturn(ByVal _

DN As String, ByVal DevType As Long, ByVal Class As Long,
ByVal ExtnClass As Long, ByVal AssocDN As String, ByVal
AssocClass As Long, ByVal Name As String)

 DoStatus "Device = " + DN

 DoStatus "Device Type = " + Cstr(DevType)

 DoStatus "Class = " + Cstr(Class)

 DoStatus "ExtnClass = " + Cstr(ExtnClass)

 If Not AssocDN Is Empty Then

 DoStatus "AssocDN = " + AssocDN

 DoStatus "AssocClass = " + Cstr(AssocClass)

 End If

 DoStatus "Name = " + Name

End Sub

QueryTimeOfDayReturn
Syntax:

Response to method: [QueryTimeOfDay]

QueryTimeOfDayReturn(ByVal Year As Long, ByVal
Month As Long, ByVal Day As Long, ByVal Hour As
long, ByVal Minute As Long, ByVal Second As Long)

Description: Returns time-of-day information from the PBX.

Parameters
Year The present year as defined in the switch.

Month The present month as defined in the switch.

Day The present day as defined in the switch.

 Query Events 142

Minute

Class Settings

Hour The present hour as defined in the switch.

The present minute as defined in the switch.

Second The present second as defined in the switch.

None.

Sample Code
Private Sub px_QueryTimeOfDayReturn(ByVal Year As Long,
ByVal Month As Long, ByVal Day As Long, ByVal Hour As long,
ByVal Minute As Long, ByVal Second As Long)

 DateStamp = cstr(Month) + "/" + cstr(Day) + "/" +
Cstr(Year)

 Dim TimeStamp As String

 Dim DateStamp As String

 TimeStamp = cstr(Hour) + ":" + cstr(Minute) + ":"
+ cstr(Second)

End Sub

QueryTrunkGroupReturn
Syntax:

Description: Returns trunk group information for <TAC>.

Response to method: [QueryTrunkGroup]

QueryTrunkGroupReturn(ByVal DN As String, ByVal
Used As Long, ByVal Idle As Long)

Parameters
DN This is the trunk group access code that was queried.

Used The number of ‘in-use’ trunks.

Idle The number of ‘idle’ trunks.

Class Settings
None.

 Query Events 143

 Sample Code
Private Sub px_QueryTrunkGroupReturn(ByVal DN As String,
ByVal Used As Long, ByVal Idle As Long)

 DoStatus "Trunk Group = " + DN

 DoStatus "Used trunks = " + cstr(Used)

 DoStatus "Idle trunks = " + cstr(Idle)

End Sub

QueryStationStatusReturn
Syntax:

Response to method: [QueryStationStatus]

QueryStationStatusReturn(ByVal DN As String, ByVal
Status As Long)

Description: Returns busy/idle status of the specified device.

Parameters
DN The station device that was queried.

Status The status of the station. This is a Boolean value of if
the station is busy or False if the station is idle.

Class Settings
None.

Sample Code
Private Sub px_QueryStationStatusReturn(ByVal DN As
String, ByVal Status As Long)

 LedBusyStatus.BackColor = vbGreen

 DoStatus "Station DN = " + DN

 If Status = True Then

 Else

 LedBusyStatus.BackColor = vbGray

 End If

End Sub

 Query Events 144

QuerySendAllCallsReturn
Syntax: QuerySendAllCallsReturn(ByVal DN As String, ByVal

Status As Long)

Response to method: [QuerySendAllCalls]

Description: Returns the status of the Send All Calls feature for the
specified device.

Parameters
DN The station DN that this query was made upon.

Status The status of the Send All Calls feature. It is set to True
if the Send All Calls feature was turned on and False if it
is off.

Class Settings
None.

Sample Code
Private Sub px_QuerySendAllCallsReturn(ByVal DN As
String, ByVal Status As Long)

 DoStatus "SAC is not active"

 End If

 If Status = True Then

 DoStatus "SAC is active"

 LedSAC.BackColor = vbGreen

 Else

 LedSAC.BackColor = vbGray

End Sub

QueryForwardingReturn
Syntax:

Response to method: [QueryForwarding]

QueryForwardingReturn(ByVal DN As String, ByVal
ForwardState As Long, ByVal ForwardDN As String)

Description: Returns the status of the Call Forward feature for
specified device.

Parameters
DN This is the station DN that was queried.

 Query Events 145

ForwardState

This parameter stores the forwarding destination
number.

The returned value for this parameter is True
(forwarding is active) or False (forwarding is not
active).

ForwardDN

Class Settings
None.

Sample Code
Private Sub px_QueryForwardingReturn(ByVal DN As String,
ByVal ForwardState As Long, ByVal ForwardDN As String)

 DoStatus "FWD is active on " + ForwardDN

 If ForwardState = True Then

 LedFWD.BackColor = vbRed

 Else

 LedFWD.BackColor = vbGray

 DoStatus "FWD is not active"

 End If

End Sub

QueryMessageWaitingReturn
Syntax:

Returns the status of the Message Waiting feature for
the specified device.

 Response to method: [QueryMessageWaiting]

QueryMessageWaitingReturn(ByVal DN As String,
ByVal MWState As Long, ByVal MWActivator As Long)

Description:

Parameters
DN This parameter returns the on-switch station extension

number that was queried.

MWState This parameter returns True if the Message Waiting
feature is on or False if it is off.

MWActivator This parameter returns the application that activated the
Message Waiting feature.

Class Settings
None.

 Query Events 146

Code Example
Private Sub px_QueryMessageWaitingReturn(ByVal DN As
String, ByVal MWState As Long, ByVal MWActivator As Long)

 If MWState = True Then

 DoStatus "Activator = " + cstr(MWActivator)

End Sub

 DoStatus "Station DN = " + DN

 LedMWI.BackColor = vbRed

 Else

 LedMWI.BackColor = vbGray

 End If

QueryUCIDReturn
Syntax: QueryUCIDReturn(ByVal CallID As Long, ByVal

UCID As String)

Description:

Response to method: [QueryUCID]

Returns the universal call ID for a specified call ID.

Parameters
CallID This parameter returns the call identifier for the call.

This is the parameter that queried for the UCID.

UCID The universal call identifier associated with the call ID.

Class Settings
None.

Sample Code
Private Sub px_QueryUCIDReturn(ByVal CallID As Long,
ByVal UCID As Long)

 " has a UCID of " + cstr(UCID)

End Sub

 DoStatus "The CallID = " + cstr(CallID) + _

 147

In This Chapter
SnapshotCall... 148
SnapshotDevice .. 149

C H A P T E R 1 6

Snapshot Methods

This chapter contains the snapshot methods PhoneX uses to retrieve snapshots of
calls or devices.

 Snapshot Methods 148

SnapshotCall
Syntax:

Description: Requests a snapshot of the specified <CallID> on the
specified device.

Snapshotcall(ByVal DN As String, ByVal CallID As
Long) As Long

Returns: Long

Parameters
DN This parameter specifies a valid station device.

CallID This parameter specifies a valid CallID.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Usage Notes
This method provides information for each end point on the specified call. The
information provided include Device ID, connection ID and the CSTA local
connection state.

The DN parameter may be an on-switch alerting extension or a split hunt group
with calls in queue. When a call is queued on more than one split hunt group, only
one split hunt group extension is provided in the response to such a query. For calls
alerting at various groups, the group extension is reported to PhoneX. For calls
connected to a member of a group, the group member’s extension is reported to
PhoneX.

Return Events (in order fired)
SnapshotCallReturn This event returns with the information in a call class.

Error Event Values
Invalid_CSTA_Call_Identifier

Sample Code

An invalid CallID was specified.

Invalid_CSTA_Device_Identifier

An invalid DN was specified.

Private Sub cmdSnapshotcall_Click()

 Dim lRtn As Long

 lRtn = px.Snapshotcall(myDN,callID)

End Sub

 Snapshot Methods 149

SnapshotDevice
Syntax:

Requests information about calls associated with a
given CSTA device. The information identifies each
call and indicates the CSTA local connection state for
all devices on each call.

SnapshotDevice(ByVal DN As String) As Long

Description:

Returns: Long

Parameters
DN This parameter contains the valid device number.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
SnapShotDeviceReturn This event returns the information within the device

class.

Error Event Values
Invalid_CSTA_Device_Identifier

Sample Code

An invalid device identifier was specified in DN.

Private Sub cmdSnapShotDevice_Click()

 Dim lRtn As Long

 lRtn = px.SnapshotDevice(forwardingDN)

End Sub

 150

This chapter includes events that return upon successful snapshot requests.

In This Chapter
SnapshotCallReturn.. 151
SnapShotDeviceReturn... 151

Snapshot Events
C H A P T E R 1 7

 Snapshot Events 151

SnapshotCallReturn
Syntax:

Description: Returns the snapshot for <CallID> on the specified
device.

Response to method: [Snapshotcall]

SnapshotCallReturn(ByVal clsCall As CallClass)

Parameters
clsCall The call class that contains the information for the

snapshot.

Class Settings
CallID The callID associated with this call.

DN

CallState The state the call is in. For call state values, refer to the
enumeration enCallState in the PhoneX Enumerations
Guide.

Sample Code

The station number associated with this call.

Private Sub px_SnapshotCallReturn(ByVal clsCall As
CallClass)

 If clsCall.CallState = enCallState.csHold Then

 LedGreen.BackColor = vbGreen

 Else

 LedGreen.BackColor = vbGray

 FlashGreenLED(False)

 FlashGreenLED(True)

 End If

End Sub

SnapShotDeviceReturn
Syntax:

Returns the snapshot for the specified device.

Response to method: [SnapshotDevice]

SnapShotDeviceReturn(ByVal clsDevice As
DeviceClass)

Description:

Parameters
clsDevice The device class that contains the information for the

snapshot.

 Snapshot Events 152

Class Settings
DeviceState The current state of the device. For device state values,

refer to the enumeration enDeviceState in the PhoneX
Enumerations Guide.

DeviceIdentifier The device identifier associated with a call that is
active on the device.

Sample Code
Private Sub px_SnapShotDeviceReturn(ByVal clsDevice As
DeviceClass)

 If clsDevice.DeviceState = _

 enDeviceStatus.staBusy Then

 LedBusyInd.BackColor = vbGray

 ledBusyInd.BackColor = vbGreen

 DoStatus "The device " + clsDevice.DeviceDN
+ " is busy."

 Else

 DoStatus "The device " + clsDevice.DeviceDN
+ " is idle."

 End If

End Sub

 153

In This Chapter
RouteRegister ... 154
RouteSelect... 154
RouteEnd.. 155
RouteRegisterCancel .. 156

C H A P T E R 1 8

Routing Methods

This chapter shows the routing methods supported by PhoneX to route calls that
come in to a VDN.

 Routing Methods 154

RouteRegister
Syntax: RouteRegister(ByVal clsDevice As DeviceClass) As Long

Description: Registers the controlling application as a routing server for
a specific VDN.

Returns: Long

Parameters
clsDevice The device class that is associated with a specific VDN.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Usage Notes
The application must register itself as a routing server before any
RouteRequestService events may be returned from the device. The controlling
application may be a routing server for more than one routing device but for a
specific routing device, the switch allows only one application registered as the
routing server. If a routing device already has a routing server registered,
subsequent use of this RouteRegister method will be negatively acknowledged.

Return Events (in order fired)
RouteRegistered This event fires when the switch accepts the route

registration.

Error Event Values
Outstanding_Request_Limit_Exceeded

This error indicates that the routing device already has a registered routing server.

 Sample Code
Private Sub cmdRouteRegister_Click()

 Dim lRtn As Long

 lRtn = px.RouteRegister(clsDevice)

End Sub

RouteSelect
Syntax:

Description: Provides the switch with a destination in response to the
RouteRequestService event.

RouteSelect(ByVal clsCall As CallClass) As Long

Returns: Long

 Routing Methods 155

Parameters
clsCall The call class to be routed to the new destination.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
RouteUsed This provides the actual destination (as a number) for the

routing server application.

RouteEnded Returns when the routing dialog is completed.

Error Event Values
Invalid_CSTA_Device_Identifier

An invalid routing registration request ID was specified in the device class.

Invalid_Cross_Ref_ID

An invalid route cross reference ID was specified in the device class.

Code Example
Private Sub cmdRouteSelect_Click()

 Dim lRtn As Long

 lRtn = px.RouteSelect(clsCall)

End Sub

RouteEnd
Syntax:

Returns:

Parameters

RouteEnd(ByVal clsCall As CallClass) As Long

Description: Terminates a routing dialog for a call.

Long

clsCall The call class that contains the active call that contains
the VDN routing sequence to be ended.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
RouteEnded Returns when the routing dialog is completed.

 Routing Methods 156

Error Event Values
Invalid_Cross_Ref_Id

An invalid cross reference ID was specified in the call class.

Sample Code
Private Sub cmdRouteEnd_Click()

 Dim lRtn As Long

 lRtn = px.RouteEnd(clsCall)

End Sub

RouteRegisterCancel
Syntax: RouteRegisterCancel(ByVal clsDevice As DeviceClass) As

Long

Description: Cancels a previously registered route session. When this
service request is successful, the controlling application will no
longer be a routing server for the specified VDN.

Returns: Long

Parameters
clsDevice The device class containing the VDN

information for cancellation of the route.

Return Values
For PhoneX return error values, refer to the enumeration enPhoneXError in the
PhoneX Enumerations Guide.

Return Events (in order fired)
RouteRegisterCancelReturn This event returns as a result of a successful

cancellation of a routing registration.

Error Event Values
Invalid_CSTA_Device_Identifier

An invalid routing registration ID has been specified in the request.

Sample Code
Private Sub cmdRouteRegisterCancel_Click()

 Dim lRtn As Long

 lRtn = px.RouteRegisterCancel(clsDevice)

End Sub

 157

In This Chapter
RouteEnded .. 158
RouteRegisterAbort.. 158
RouteRegistered ... 159
RouteRegisterCanceled .. 159
RouteRequestService.. 160
RouteUsed .. 160

C H A P T E R 1 9

Routing Events

This chapter includes the events that return upon successful routing requests made
by PhoneX to the switch. It also includes events that return from the switch where
routing has aborted or when there is a call for routing to begin.

 Routing Events 158

RouteEnded
Syntax:

Response to method: [RouteEnd]

Parameters

RouteEnded(ByVal clsCall As CallClass)

 Description: Returns when the routing dialog has ended.

clsCall This parameter contains the call class the application
sent with a RouteEnd request to the switch.

Class Settings
DN This displays the VDN that got the RouteEnd request.

CallerDigits Any entered digits that were used.

CalledDN This contains the called DN that will be handled by the
switch after terminating the routing functionality to be
performed by the application.

UUI Any user-to-user information attached to this call that
entered this VDN.

 Sample Code
Private Sub px_RouteEnded(ByVal clsCall As CallClass)

 DoStatus "Route Ended for " + clsCall.DN

End Sub

RouteRegisterAbort
Syntax: RouteRegisterAbort(ByVal clsDevice As

DeviceClass)

Response to method:

Description: Fires when the switch aborted a routing registration
session.

None.

Parameters
clsDevice The device class aborted from the routing registration

session.

Class Settings
DeviceDN The VDN aborted from the routing registration

session.

 Routing Events 159

Sample Code
Private Sub px_RouteRegisterAbort(ByVal clsDevice As
DeviceClass)

End Sub

 DoStatus "VDN " + clsDevice.DeviceDN + " has _

 Route registration aborted by switch."

RouteRegistered
Syntax:

Description:

Response to method: [RouteRegister]

Parameters

RouteRegistered(ByVal clsDevice As DeviceClass)

Fires when the request to register the application as a
routing application is successful.

clsDevice The device class that contains the VDN information for
the routing application.

Class Settings
DeviceDN The VDN number that was successfully registered for

the routing application.

Sample Code
Private Sub px_RouteRegistered(ByVal clsDevice As
DeviceClass)

 DoStatus "Route registration for the VDN " + _

 clsDevice.DeviceDN + " has been successful."

End Sub

RouteRegisterCanceled
Syntax:

Description: Fires when the

Response to method:

Parameters

Class Settings

 Routing Events 160

Sample Code

RouteRequestService
Syntax:

Description:

Response to method:

Parameters

RouteRequestService(ByVal clsCall As CallClass)

Fires when the switch requests the controlling
application to select a route for the current call. The
application, if connected to a database, may use
certain parameters in the call class to determine which
route the call will be routed.

None.

clsCall

Class Settings

The call class that contains the call to be routed.

CallerDN The DN associated with the call to be routed.

UUI

Any user-entered digits included with the call.

Sample Code

Any user-to-user information strings included with the
call.

CallerDigits

CallID The call ID of the call to be routed.

UCID Any universal call ID associated with the CallID.

Private Sub px_RouteRequestService(ByVal clsCall As
CallClass)

 lRtn = px.RouteSelect(clsCall)

 Dim lRtn As Long

 If clsCall.CallerDigits = "123456" Then

 Else

 lRtn = px.RouteEnd(clsCall)

 End If

End Sub

RouteUsed
Syntax: RouteUsed(ByVal clsCall As CallClass)

 Routing Events 161

Description: Fires when the switch has provided the routing server
application with the destination for a call.

Return event: [RouteSelect]

Parameters
clsCall The call class containing the destination that was returned

from the switch.

Class Settings
CalledDN The destination DN the call is being routed to.

The VDN that performed the routing.

CallerDN The DN where the call originated from.

DN

Sample Code
Private Sub px_RouteUsed(ByVal clsCall As CallClass)

 DoStatus "Route Used = " + clsCall.CalledDN

 DoStatus "Route Source = " + clsCall.DN

End Sub

 DoStatus "Originated = " + clsCall.CallerDN

 162

In This Chapter
Language .. 163

Language Properties
C H A P T E R 2 0

This chapter includes the property used for language control in PhoneX:

 Language Properties 163

Language
Syntax:

Description:

Usage Notes

Language

This specifies the language type to be used with PhoneX.

This property has a default value set to English. There are many languages that can
be used with PhoneX. Please check with your supplier for the availability of the
language of your choice.

 164

In This Chapter
GetFontObject .. 165
GetStringValue... 165
GetStringValueEx .. 166

C H A P T E R 2 1

Language Methods

This chapter includes the methods that allow language capability within PhoneX.

 Language Methods 165

GetFontObject
Syntax: GetFontObject(ByVal FontObjectNumber As Long) As StdFont

Description:

Returns: StdFont

Requests the font type to be used with the selected language.

Parameters
FontObjectNumber These are the selected types of font objects that

PhoneX can use for a specific language.

Return Values
This returns the font type associated with the FontObjectNumber.

Usage Notes
This method will retrieve the relevant font object associated with the
FontObjectNumber. The relevant font object is defined by the language controls. It
returns the default font object if no language has been selected.

Return Events
None.

Sample Code
Private Sub cmdGetFontObject_Click()

 Dim font As StdFont

 Set font = px.GetFontObject(1)

 DoStatus “Font Name = ” & font.Name

End Sub

GetStringValue

Syntax:

Description: Retrieves the string associated with the StringID value. This is
the relevant string that is translated into the specified language.

Returns: String

Parameters

GetStringValue(ByVal StringID As Long) As String

StringID The number associated with the string to be returned.

Return Values
The string associated with the StringID.

 Language Methods 166

Return Events
None.

Sample Code
Private Sub GetResourceStrings()

 CmdButton1.Caption = Me.px.GetStringValue(4032)

End Sub

GetStringValueEx
Syntax:

Description: Retrieves the string associated with the StringID plus any
additional, user-specific string information.

GetStringValueEx(ByVal StringID As Long, ByVal Param1 As
String, Optional ByVal Param2 As String, Optional ByVal
Param3 As String, Optional ByVal Param4 As String) As String

Returns: String

Parameters
StringID The number associated with the string to be returned.

Param1 The user-defined component of the string.

Param2 The second (optional) user-defined component of the
string.

Param3 The third (optional) user-defined component of the
string.

Param4 The fourth (optional) user-defined component of the
string.

Return Values
The parameters are designated within the string by ‘%%#’, where # represents a
number between one and four. These numbers relate to the parameter numbers, eg.
%%1 relates to Param1.

Return Events
None.

Sample Code
If the string 4033 has the following text: “Incoming call from %%1 alerting at
device %%2”. This will translate to “Incoming call from 8850 alerting at device
8650”.

Private Sub GetResourceStrings()

 TxtText1.Text = Me.px.GetStringValueEx(4033,
“8850”, “8650”)

End Sub

 Language Methods 167

 168

This chapter includes the miscellaneous methods supported by PhoneX. These
methods are not directly related to telephony but are essential for the telephony
functionality to work correctly.

In This Chapter
NumberUnformatNumber .. 169
NumberCheckDialableNumber .. 170
NumberGetDialableCharacters... 171
NumberSetDialableCharacters ... 171
VersionGetPhoneXVersion .. 172
AboutBox ... 173

C H A P T E R 2 2

Miscellaneous Methods

 Miscellaneous Methods 169

NumberUnformatNumber
Syntax:

Unformats any extra dialable characters that appear with the
CLI.

String

NumberUnformatNumber(ByVal Number As String) As
String

Description:

Returns:

Parameters
Number The number to be unformatted

Return Values
The received number after unformatting has been done for the appropriate dialable
characters.

Usage Notes
This method should be used before performing a call since the file that stores the
numbers may have special character formatting. For example, in a database, a
phone number is stored as (0800) 23-4-5678. Passing it through this method
removes the brackets, spaces, dashes and any other invalid characters. The number
is converted to 08002345678, which is accepted by the switch.

Return Events
None.

Error Event Values
None.

Sample Code
Private Sub cmdMakeCall_Click()

 Dim lRtn As Long

 Dim clsCall As CallClass

 If Not clsCall Is Nothing Then

 lRtn = px.CallDial(clsCall)

 Set clsCall = px.ActiveCallClasses.Add()

 clsCall.CallerDN = "8572"

 clsCall.CalledDN =
NumberUnformatNumber("(0800) 23-4-5678")

 End If

End Sub

 Miscellaneous Methods 170

NumberCheckDialableNumber
Syntax:

Checks to see if the number to be dialled is a valid number.

NumberCheckDialableNumber(ByVal Number As String) As
Long

Description:

Returns: Long

Parameters
Number The number to be checked to determine that it contains only

dialable characters.

Return Values
If the number contains only dialable characters, the function returns 0. If not, the
function returns the location of the first non-dialable character. If the number is too
long, the length+1 is returned.

Usage Notes
This method performs a check to ensure the number to be dialled is acceptable to
the switch. It does not check for invalid destination numbers. Any invalid
characters (eg. {[}]`) will cause this method to return the location of the first
non-dialable character.

Return Events
None.

Error Event Values
None.

Sample Code
Private Sub cmdMakeCall_Click()

 Dim lRtn As Long

 Dim isDialable As Long

 Dim clsCall As CallClass

 isDialable =
px.NumberCheckDialableNumber(clsCall.CalledDN)

 End If

 Set clsCall = px.ActiveCallClasses.Add()

 If Not clsCall Is Nothing Then

 clsCall.CallerDN = "8572"

 If isDialable = 0 Then

 lRtn = px.CallDial(clsCall)

 End If

End Sub

 Miscellaneous Methods 171

NumberGetDialableCharacters
Syntax: NumberGetDialableCharacters() As String

Description:

Returns:

Parameters

Retrieves the dialable character set PhoneX is currently using.

String

None.

Return Values
The method returns a string variable that contains a list of all the characters
considered as valid, dialable characters.

Usage Notes
This method may be used anytime when the dialable character set needs to be
displayed or when the controlling application needs to use the dialable character set
to perform its own checks.

Return Events
None.

Error Event Values
None.

Sample Code
Private Sub cmdGetDialableCharacterSet_Click()

 Dim dialableString As String

 dialableString = px.NumberGetDialableCharacters()

NumberSetDialableCharacters

 DoStatus dialableString

End Sub

Syntax: NumberSetDialableCharacters(ByVal CharacterSet As
String) As Long

Description: Changes the dialable character set.

Parameters

Returns: Long

CharacterSet This string variable replaces the current valid dialable
character set.

 Miscellaneous Methods 172

Return Values
CerrorNoError This returns if the character set has been accepted.

Return Events
None.

Error Event Values
None.

Sample Code
Private Sub cmdChangeDialableCharacterSet_Click()

 Dim lRtn As Long

 Dim newSet As String

 lRtn = px.NumberSetDialableCharacters(newSet)

 newSet = "1234567890*#"

End Sub

VersionGetPhoneXVersion
Syntax:

String

Parameters

VersionGetPhoneXVersion() As String

Description: Gets the current version information for PhoneX.

Returns:

None.

Return Values
The method returns the version of the control. This will be in the format of “Major
Version”, “Minor Version”, “Fix Number” i.e. “2|14|5”

Return Events
None.

Error Event Values
None.

Sample Code
Private Sub cmdGetPXVersion_Click()

 Dim vString As String

 vString = px.VersionGetPhoneXVersion()

End Sub

 Miscellaneous Methods 173

AboutBox
Syntax: AboutBox()

Description:

Returns:

Retrieves an About Box that displays version information for
PhoneX, the Telephony Server and the switch software.

None.

Parameters
None.

Return Values
This method will display the About Box for PhoneX.

Return Events
 None.

Error Event Values
None.

Sample Code
Private Sub cmdAboutBox_Click()

 px.AboutBox

End Sub

 174

In This Chapter
TSError... 175

C H A P T E R 2 3

Miscellaneous Events

This chapter contains the miscellaneous events supported by PhoneX.

 Miscellaneous Events 175

TSError
Syntax:

Description: Fires when a problem has occurred with PhoneX.

Parameters

TSError(ByVal clsError As ErrorClass)

Response to method: None.

clsError The error class that is returned. For more information,
refer to the chapter, Class Structures.

Class Settings
None.

Sample Code
Private Sub px_TSError(ByVal clsError As ErrorClass)

 FrmError.InvokeID = clsError.InvokeID

 FrmError.ErrorLevel = clsError.ErrorLevel

 FrmError.ResolutionText = clsError.ErrorDevice

 FrmError.ErrorCode = clsError.ErrorCode

 FrmError.ErrorType = clsError.ErrorType

 FrmError.ErrorText = clsError.ErrorContext

 FrmError.Show vbModal

End Sub

 176

In This Chapter
ApplicationName.. 177
AutoMonitorSplitOnAgentLogin ... 177
CLIRestrictedReplacementString... 177
DisableSpecialDialSequence.. 178
HonorDefinityCLIRestriction... 178
hWnd .. 178
Index... 178
IsConnected.. 179
MaximumCallAppearances .. 179
MaxMonitoredDNs .. 179
MaxOldCallListSize ... 179
MinimumCallAppearances... 180
Name .. 180
Object ... 180
Parent.. 180
ReplaceUUIandCDwithOCIInfo .. 181
Tag.. 181
TServers ... 181
TraceActivity.. 183
PollingSpeedAgentInfo .. 183
PollingSpeedFeatures ... 183
PrivateVersion .. 183
QueryACDStatus.. 184
StripCLIRestrictionIndicator .. 184
TrunkIDReplacementString ... 184
UpdateAgentStateOnCallClear... 185

C H A P T E R 2 4

Control Properties

This chapter defines the control properties used by PhoneX.

 Control Properties 177

ApplicationName
Syntax:

The ApplicationName property is used by the PhoneX control
when issuing the login request to Avaya CT and when requesting
a license from the License Server.

ApplicationName as string

Description:

Usage Notes
If this property is set by the controlling application, then the License Server must
have an installed license of the same name. If there is no license of the same name
then the PhoneX control will return an error indicating that a runtime license can
not be found.

The default setting for this property is blank. When blank, the License Server will
assume that the application requires a Contact Center Express license to be issued.

AutoMonitorSplitOnAgentLogin
Syntax:

When set (True), PhoneX will automatically monitor the
split/skill device that an agent logs into.

AutoMonitorSplitOnAgentLogin

Description:

Usage Notes
This is a Boolean property with a default value of True. When it is set to True,
PhoneX will automatically monitor the particular split/skill an agent logs into.

CLIRestrictedReplacementString

Syntax:

Description: When the calling party number received from the Telecom
provider has presentation restriction, this string will replace the
calling party number (CallingDN) in the call class.

CLIRestrictedReplacementString

Usage Notes
This property is a string property with default value set as “Restricted CLI”. This
string will pass to the container application if the calling party number has a
presentation restriction set. Change the property value if another value is required.

 Control Properties 178

DisableSpecialDialSequence
Syntax:

When set to True, special dial character intercepts will be
disabled on a permanent basis.

DisableSpecialDialSequence

Description:

Usage Notes
The property type is a Boolean with a default setting of False. This will remove any
special dial character intercepts permanently.

HonorDefinityCLIRestriction
Syntax: HonorDefinityCLIRestriction

Description: When set to True and the calling party is restricted, PhoneX will
replace the CallerDN number with the value found in
CLIRestrictedReplacementString.

Usage Notes
This property is a Boolean property with a default value of True. If this property is
set to True, the CLI will not display but rather a replacement string of the calling
party number.

hWnd
Syntax:

Usage Notes

Description:

Index
Syntax: Index As Integer

This property is used for creating a control array for PhoneX.

Usage Notes

 Description:

Returns/sets the number identifying a PhoneX control in a control array.

 Control Properties 179

IsConnected
Syntax: IsConnected

This parameter is set when PhoneX connects to the Telephony
Server.

Description:

Usage Notes
This property has default setting of False. When there is a connection to the
Telephony Server, this property will be set to True.

MaximumCallAppearances
Syntax:

A Read-only property of the maximum number of call
appearances that are supported by PhoneX for a particular station
device.

Usage Notes

MaximumCallAppearances

Description:

A Read-only property that informs the user of the maximum number of call
appearances able to be allocated for an individual station device.

MaxMonitoredDNs

Syntax: MaxMonitoredDNs as long

Description: Used to specify the maximum number of DN's that can be
monitored by the PhoneX device.

Usage Notes
While present in the PhoneX COM interface this property is not currently used.

MaxOldCallListSize
Syntax:

Description:

MaxOldCallListSize

Sets the size of the old call list.

 Control Properties 180

Usage Notes
This property has a default value of 100. The range for the history list of old calls is
10 to 1000. Newer calls will be placed at the bottom of the stack and the older calls
will be removed once the limit has been exceeded.

MinimumCallAppearances
Syntax: MinimumCallAppearances

Description: A Read-only property of the minimum number of call
appearances that are supported by PhoneX for a particular station
device.

Usage Notes
A Read-only property that informs the user of the minimum number of call
appearances able to be allocated for an individual station device.

Name
Syntax:

Description:

Usage Notes

Object
Syntax:

Description:

Usage Notes

Parent
Syntax:

 Control Properties 181

Usage Notes

Description:

ReplaceUUIandCDwithOCIInfo

Syntax:

Description:

Usage Notes
i added this from aa manual.

A value that determines how the application handles user-to-user information
(UUI) and collected digits (CD) when a call is transferred twice. If a call containing
user information is transferred once, this information is transferred. But if the call
is transferred a second time and the person making the transfer enters some new
user information, ReplaceUUIandCDwithOCIInfo determines which set of user
information is transferred. If the parameter is set to 0 (False), the application sends
the new user information. If set to 1 (True), the application overwrites (replaces)
the new information with the original user information (known as the original call
information or OCI).

Tag
Syntax:

Description:

Usage Notes

TServers

Syntax:

Description:

Usage Notes

 Control Properties 182

 Control Properties 183

TraceActivity
Syntax: TraceActivity

Description: Sends PhoneX-related information to the parent container.

Usage Notes
This property has a default value of False. When set to True, PhoneX-related
information will be sent to the parent container.

PollingSpeedAgentInfo
Syntax: PollingSpeedAgentInfo

Description: The speed at which PhoneX will poll the Definity
switch/MultiVantage server to update the agent information.

Usage Notes
The default value for this property is 20, where the value specified is in seconds.
The range for this property is 5 to 600. This is the frequency at which PhoneX will
query the switch for agent information.

PollingSpeedFeatures
Syntax: PollingSpeedFeatures

Description: The speed at which PhoneX will poll the Definity
switch/MultiVantage server to update the station features, eg.
Send All Calls, Message Waiting and Call Forward.

Usage Notes
The default value for this property is 20, where the value specified is in seconds.
The range for this property is 5 to 600. This is the frequency at which PhoneX will
query the switch for Send All Calls, Call Forward and Message Waiting feature
information.

PrivateVersion
Syntax:

Description:

PrivateVersion

The current private version data supported by the Telephony
Server link.

 Control Properties 184

Usage Notes
This property is only valid when there is an open telephony link. It will store the
supported version of private data able to be used with the Telephony Server.

QueryACDStatus
Syntax: QueryACDStatus

Description: When set (True), PhoneX will query the Definity
switch/MultiVantage server to update the status of all agents
logged in.

Usage Notes
The default value for this property is True. When set, PhoneX will query the switch
to update the status for all logged-in agents. The polling speed is set to that of
PollingSpeedAgentInfo.

StripCLIRestrictionIndicator
Syntax: StripCLIRestrictionIndicator

Description: When set (True), PhoneX will remove the CLI Restriction
indicator received with the calling party number from the
Telecom provider.

Usage Notes
The property type is a Boolean with default setting of True. This will remove the
CLI restriction placed by the provider on the calling party number.

TrunkIDReplacementString
Syntax:

Description: Calls presented from the Definity switch/MultiVantage server
that do not have a calling party number have the calling party
field populated with a default string consisting of “T1#xxx”,
where xxx represents the call ID. PhoneX will automatically
replace this string with the value contained in
TrunkIDReplacementString. If this field is zero length, the
Definity/MultiVantage-provided string would be left unchanged.

TrunkIDReplacementString

 Control Properties 185

Usage Notes
The default string value for this property is “Outside Call”. This will be the
replacement string for any trunk calls. Change this property string if a different
description is desired.

UpdateAgentStateOnCallClear
Syntax: UpdateAgentStateOnCallClear

Description: When set (True), PhoneX will automatically perform an update
query on the Definity switch/MultiVantage server as to the agent
state. This will ensure that automatic changes (eg. timed After
Call Work) and manual logouts or state changes are reflected as
soon as possible to the container application.

Usage Notes
This property is a Boolean property type. The default property setting is True.
When set, it will cause PhoneX to automatically update the agent state by querying
the switch on all logged-in agents.

 186

PhoneX will accept the special dial characters in the CalledDN field. These special
dial characters allow the user to manipulate the manner in which calls are dialed.

In This Chapter
Alphanumeric Characters ... 187
Post-Dial DTMF... 188
User-to-User Information ... 189

Appendix A - Special Dial Characters
C H A P T E R 2 5

 Appendix A - Special Dial Characters 187

Alphanumeric Characters
PhoneX converts alphanumeric characters into their equivalent numeric values:

Alphanumeric character Numeric equivalent
ABC abc 2

DEF def 3

GHI ghi 4

JKL jkl 5

MNO mno 6

PQRS pqrs 7

TUV tuv 8

WXYZ wxyz 9

Example

If the CalledDN field in the CallDial method contains the string ‘1800Avaya’,
PhoneX converts this to its numeric equivalent ‘180028292’.

 Appendix A - Special Dial Characters 188

Post-Dial DTMF
You can instruct PhoneX to send part of the dial string as in-band DTMF
signalling. To do this, insert an exclamation mark (!) between the phone number
and the post-dial digits.

If the CalledDN field in the CallDial method contains the string
‘1800Avaya!8888#’, PhoneX dials ‘180028292’ and, when the call is answered,
outpulses ‘8888#’ as in-band DTMF signalling.

Note: To send DTMF digits from a Avaya Computer Telephony interface, you
need a StreamVersion of 5. If the CalledDN contains an exclamation mark and the
StreamVersion is ‘4’, post-dial digits are ignored.

Example

 Appendix A - Special Dial Characters 189

User-to-User Information
You can instruct PhoneX to include user-to-user information in the dial string. To
do this, insert a semi-colon (;) between the phone number and the user-to-user
information. The maximum length of user-to-user information currently accepted
by the Definity ECS is 96 characters (assuming you have a Release 8 or better
switch with Avaya Computer Telephony Release 3.30 Version 2.0 or higher on the
Telephony Server; otherwise 32 characters for a switch prior to Release 8).

Note: The call class contains a variable specifically for user-to-user information. If
this variable contains valid data (ie. it is not 0 length), the information gathered
from the CalledDN variable is discarded.

If the CalledDN field in the CallDial method contains the string
‘1800Avaya;Hello from Avaya’, PhoneX dials ‘180028292’ and sends ‘Hello
from Avaya’ as user-to-user information.

You can also instruct PhoneX to send user-to-user information along with
post-dial DTMF signalling. User-to-user information, however, must be included
after the DTMF digits.

Note: Each special character sequence can only be included once, and any
additional special dial characters are discarded.

If the CalledDN field in the CallDial method contains the string,
“1800Avaya!8888#;Hello from Avaya”, PhoneX dials ‘180028292’ and sends
‘Hello from Avaya’ as user-to-user information. When the call is answered, it
outpulses ‘8888#’ as in-band DTMF digits.

Example

User-to-User Information & Post-Dial DTMF Digits

Example

If, however, the string was ‘1800Avaya;Hello from Avaya!8888#’, PhoneX dials
‘180028292’ and sends ‘Hello from Avaya!8888#’ as user-to-user information. It
won’t recognize ‘8888#’ as post-dial DTMF digits.

 190

In This Chapter
Version Numbers.. 191
PhoneX Status Dump ... 192
PhoneX Tracing.. 193
Disable Special Dial Sequence ... 194

C H A P T E R 2 6

Appendix B - PhoneX Dial Control

For debugging purposes, information can be gained from PhoneX by issuing the
following special dial sequences. These dial sequences will not be passed to the
Telephony Server as a valid dial request.

 Appendix B - PhoneX Dial Control 191

Version Numbers
If problems arise and you contact Avaya, the support personnel may ask you to
supply version information. This can be gained by dialling the code sequence
‘0000000’ into PhoneX, ie. issuing a CallDial method with the CalledDN set to
‘0000000’. This will cause a series of dialog boxes to display with the version
numbers of all the components being used by the Contact Center Express suite.

 Appendix B - PhoneX Dial Control 192

PhoneX Status Dump
You can instruct PhoneX to complete a status dump of all its internal parameters.
The dump includes all call, device, agent and script classes, as well as the settings
for all PhoneX properties.

The status dump can be started by dialling the code sequence ‘0000001’ into
PhoneX, ie. issuing a CallDial method with the CalledDN set to ‘0000001’.

The status dump will be appended to the daily trace file. Tracing of PhoneX is
stored in a text file located in the runtime directory of the container application.
Trace files are automatically created with the name xxx_trc.txt, where xxx is the
day of week (eg, Tue_trc.txt is Tuesday’s log file). Log files are created on a daily
basis, giving a rolling, seven-day trace sequence. This trace dump will be
completed regardless of whether PhoneX tracing is enabled or not.

 Appendix B - PhoneX Dial Control 193

PhoneX Tracing
In the customer release version of PhoneX, tracing is disabled. You can enable
tracing from the host application by dialling the code sequence ‘0000002’ into
PhoneX, ie. issuing a CallDial method with the CalledDN set to ‘0000002’. If
tracing is enabled, you can disable it again by dialing the code sequence ‘0000003’
into PhoneX.

Tracing of PhoneX is stored in a text file located in the runtime directory of the
container application. Trace files are automatically created with the name
xxx_trc.txt, where xxx is the day of week (eg, Tue_trc.txt is Tuesday’s log file).
Log files are created on a daily basis, giving a rolling, seven-day trace sequence.

 Appendix B - PhoneX Dial Control 194

Disable Special Dial Sequence
It is envisaged that the dial sequences mentioned on the previous page are not
numbers required in the real world.

If this is not the case, you can disable the interception of these dial sequences from
the host application by dialling the code sequence ‘0000099’ into PhoneX, ie.
issuing a CallDial method with the CalledDN set to ‘0000099’. All special dial
sequences will then be sent to the Telephony Server as normal make call requests.

Once disabled, you cannot re-enable the special dial intercept during the runtime
life of the host application.

Note: An alternative way to disable the special dial character intercept is to set
PhoneX’s DisableSpecialDialSequence property to True.

 195

Index

A
AboutBox • 173
ActiveCallClasses Class • 28
ActiveTServerLink • 46
Agent Events • 123
Agent Methods • 118
AgentClass • 19
AgentClasses Class • 32
AgentLoggedIn • 124
AgentLoggedOut • 125
AgentLogin • 119
AgentLogout • 120
AgentSetState • 121
AgentStateReturn • 125
Alphanumeric Characters • 187
Appendix A - Special Dial Characters • 186
Appendix B - PhoneX Dial Control • 190
ApplicationName • 177
AutoFallBackToPrimaryServer • 46
AutoFallBackToPrimaryServerTime • 46
AutoMonitorSplitOnAgentLogin • 177

C
Call Control Events • 92
Call Control Methods • 63
CallActive • 93
CallAlerting • 93
CallAnswer • 64
CallAnswered • 94
CallClass • 12
CallConference • 65
CallDelivered • 96
CallDial • 68
CallDialDirectAgent • 70
CallDialSupervisorAssist • 72
CallDivert • 74
CallDiverted • 97
CallFailed • 96
CallHeld • 97
CallHold • 75
CallJoin • 76
CallListenHeld • 98
CallListenHold • 78
CallListenUnHeld • 99
CallListenUnHold • 79
CallModified • 99

CallNetworkReached • 101
CallOriginated • 101
CallPartyDrop • 81
CallPartyDropped • 102
CallPhoneActive • 104
CallPhoneNotActive • 104
CallQueued • 105
CallRelease • 82
CallReleased • 106
CallSendDTMF • 84
CallTransfer • 85
CallUnHeld • 106
CallUnHold • 88
ClassAgentModified • 41
ClassCallModified • 40
ClassDeviceModified • 40
CLIRestrictedReplacementString • 177
Control Properties • 176

D
DeviceClass • 21
DeviceClasses Class • 34
DeviceMute • 89
DeviceMuted • 107
DeviceUnMute • 90
DeviceUnMuted • 107
Disable Special Dial Sequence • 194
DisableSpecialDialSequence • 178
Document Conventions • 7

E
Error Class • 24

G
GetFontObject • 165
GetStringValue • 165
GetStringValueEx • 166

H
HonorDefinityCLIRestriction • 178
hWnd • 178

I
Index • 178
Introduction • 8, 11
IsConnected • 179

 Index 196

QueryTimeOfDayReturn • 141

RouteRegistered • 159

Routing Methods • 153

Set Feature Events • 114

SetBillingRateReturn • 116

Snapshot Methods • 147

K
Knowledge Base • 7

L
LAIInformation • 25
Language • 163
Language Methods • 164
Language Properties • 162

M
MaximumCallAppearances • 179
MaxMonitoredDNs • 179
MaxOldCallListSize • 179
MemberList Class • 17
MinimumCallAppearances • 180
Miscellaneous Events • 174
Miscellaneous Methods • 168

N
Name • 180
NumberCheckDialableNumber • 170
NumberGetDialableCharacters • 171
NumberSetDialableCharacters • 171
NumberUnformatNumber • 169

O
Object • 180
OCIInformation • 26
OCX Class Control Events • 39
OCX Link Control Events • 56
OCX Link Control Methods • 48
OCX Link Control Properties • 43
OldCallClasses Class • 30
On-Line Help • 7

P
Parent • 180
PhoneX Status Dump • 192
PhoneX Tracing • 193
PhoneXEnabled • 45
PollingSpeedAgentInfo • 183
PollingSpeedFeatures • 183
Post-Dial DTMF • 188
Preface • 6
PrivateVersion • 183
ProvideEventsForLinkRecovery • 45

Q
Query Events • 137
Query Methods • 127
QueryACDSplit • 128
QueryACDSplitReturn • 138
QueryACDStatus • 184

QueryAgentLogin • 128
QueryAgentLoginReturn • 138
QueryAgentState • 129
QueryAgentStateReturn • 139
QueryCallClassifier • 130
QueryCallClassifierReturn • 140
QueryDeviceInfo • 131
QueryDeviceInfoReturn • 140
QueryForward • 132
QueryForwardingReturn • 144
QueryMessageWaiting • 133
QueryMessageWaitingReturn • 145
QuerySendAllCalls • 131
QuerySendAllCallsReturn • 144
QueryStationStatus • 135
QueryStationStatusReturn • 143
QueryTimeOfDay • 133

QueryTrunkGroup • 134
QueryTrunkGroupReturn • 142
QueryUCID • 136
QueryUCIDReturn • 146

R
Related Documents • 7
ReplaceUUIandCDwithOCIInfo • 181
RouteEnd • 155
RouteEnded • 158
RouteRegister • 154
RouteRegisterAbort • 158
RouteRegisterCancel • 156
RouteRegisterCanceled • 159

RouteRequestService • 160
RouteSelect • 154
RouteUsed • 160
Routing Events • 157

RuntimeLicenseInformation • 27

S

Set Feature Methods • 109
SetBillingRate • 111

SetForward • 110
SetForwardReturn • 115
SetMessageWaiting • 112
SetMessageWaitingReturn • 116
SetSendAllCalls • 110
SetSendAllCallsReturn • 115
Snapshot Events • 150

SnapshotCall • 148

 Index 197

UpdateAgentStateOnCallClear • 185

SnapshotCallReturn • 151
SnapshotDevice • 149
SnapShotDeviceReturn • 151
StringCollection • 27
StripCLIRestrictionIndicator • 184

T
Tag • 181
The Class Structures • 10
TraceActivity • 183
TrunkIDReplacementString • 184
TSAuthorizationType • 61
TSError • 175
TServerLinkName/TServerLinkNameSeconda

ry • 44
TServers • 181
TServers Class • 36
TServerUserName/TServerUserNameSeconda

ry • 44
TServerUserPassword/TServerUserPasswordS

econdary • 44
TSGetAuthorizationType • 54
TSListServers • 49
TSLoggedIn • 61
TSLoggedOut • 62
TSMonitorSkill • 52
TSMonitorSkillReturn • 58
TSMonitorStation • 50
TSMonitorStationReturn • 57
TSMonitorStopped • 60
TSMonitorVDN • 53
TSMonitorVDNReturn • 59
TSServerAvailable • 57
TSShutDown • 49

U

Use of Class Information • 37
User-to-User Information • 189

V
Version Numbers • 191
VersionGetPhoneXVersion • 172

W
What is PhoneX? • 9

	Notice
	Your Responsibility for Your System's Security
	Avaya Fraud Intervention
	Trademarks
	Avaya National Customer Care Center
	European Union Declaration of Conformity
	Website
	Software License Agreement
	Definitions
	License and Protection
	Limited Warranty and Limited Liability
	General Conditions

	Preface
	Document Conventions
	Related Documents
	Knowledge Base
	On-Line Help

	Introduction
	What is PhoneX?
	Sample Code

	The Class Structures
	Introduction
	CallClass
	CallClass Parameters

	MemberList Class
	MemberList Class Parameters

	AgentClass
	AgentClass Parameters

	DeviceClass
	DeviceClass Parameters

	Error Class
	ErrorClass Parameters

	LAIInformation
	OCIInformation
	StringCollection
	StringCollection Parameters

	RuntimeLicenseInformation
	PhoneXLicenseInfo Parameters

	ActiveCallClasses Class
	CallClassListActive Parameters

	OldCallClasses Class
	CallClassListOld Parameters

	AgentClasses Class
	AgentClassList Parameters

	DeviceClasses Class
	DeviceClassList Parameters

	TServers Class
	TServerList Class Parameters

	Use of Class Information
	Creating a New Class
	Retrieving an Existing Class

	OCX Class Control Events
	ClassCallModified
	ClassDeviceModified
	ClassAgentModified

	OCX Link Control Properties
	TServerLinkName/TServerLinkNameSecondary
	TServerUserName/TServerUserNameSecondary
	TServerUserPassword/TServerUserPasswordSecondary
	PhoneXEnabled
	ProvideEventsForLinkRecovery
	AutoFallBackToPrimaryServer
	AutoFallBackToPrimaryServerTime
	ActiveTServerLink

	OCX Link Control Methods
	TSListServers
	TSShutDown
	TSMonitorStation
	TSMonitorSkill
	TSMonitorVDN
	TSGetAuthorizationType

	OCX Link Control Events
	TSServerAvailable
	TSMonitorStationReturn
	TSMonitorSkillReturn
	TSMonitorVDNReturn
	TSMonitorStopped
	TSAuthorizationType
	TSLoggedIn
	TSLoggedOut

	Call Control Methods
	CallAnswer
	CallConference
	CallDial
	CallDialDirectAgent
	CallDialSupervisorAssist
	CallDivert
	CallHold
	CallJoin
	CallListenHold
	CallListenUnHold
	CallPartyDrop
	CallRelease
	CallSendDTMF
	CallTransfer
	CallUnHold
	DeviceMute
	DeviceUnMute

	Call Control Events
	CallActive
	CallAlerting
	CallAnswered
	CallDelivered
	CallFailed
	CallDiverted
	CallHeld
	CallListenHeld
	CallListenUnHeld
	CallModified
	CallNetworkReached
	CallOriginated
	CallPartyDropped
	CallPhoneActive
	CallPhoneNotActive
	CallQueued
	CallReleased
	CallUnHeld
	DeviceMuted
	DeviceUnMuted

	Set Feature Methods
	SetForward
	SetSendAllCalls
	SetBillingRate
	SetMessageWaiting

	Set Feature Events
	SetForwardReturn
	SetSendAllCallsReturn
	SetBillingRateReturn
	SetMessageWaitingReturn

	Agent Methods
	AgentLogin
	AgentLogout
	AgentSetState

	Agent Events
	AgentLoggedIn
	AgentLoggedOut
	AgentStateReturn

	Query Methods
	QueryACDSplit
	QueryAgentLogin
	QueryAgentState
	QueryCallClassifier
	QueryDeviceInfo
	QuerySendAllCalls
	QueryForward
	QueryMessageWaiting
	QueryTimeOfDay
	QueryTrunkGroup
	QueryStationStatus
	QueryUCID

	Query Events
	QueryACDSplitReturn
	QueryAgentLoginReturn
	QueryAgentStateReturn
	QueryCallClassifierReturn
	QueryDeviceInfoReturn
	QueryTimeOfDayReturn
	QueryTrunkGroupReturn
	QueryStationStatusReturn
	QuerySendAllCallsReturn
	QueryForwardingReturn
	QueryMessageWaitingReturn
	QueryUCIDReturn

	Snapshot Methods
	SnapshotCall
	SnapshotDevice

	Snapshot Events
	SnapshotCallReturn
	SnapShotDeviceReturn

	Routing Methods
	RouteRegister
	RouteSelect
	RouteEnd
	RouteRegisterCancel

	Routing Events
	RouteEnded
	RouteRegisterAbort
	RouteRegistered
	RouteRegisterCanceled
	RouteRequestService
	RouteUsed

	Language Properties
	Language

	Language Methods
	GetFontObject
	GetStringValue
	GetStringValueEx

	Miscellaneous Methods
	NumberUnformatNumber
	NumberCheckDialableNumber
	NumberGetDialableCharacters
	NumberSetDialableCharacters
	VersionGetPhoneXVersion
	AboutBox

	Miscellaneous Events
	TSError

	Control Properties
	ApplicationName
	AutoMonitorSplitOnAgentLogin
	CLIRestrictedReplacementString
	DisableSpecialDialSequence
	HonorDefinityCLIRestriction
	hWnd
	Index
	IsConnected
	MaximumCallAppearances
	MaxMonitoredDNs
	MaxOldCallListSize
	MinimumCallAppearances
	Name
	Object
	Parent
	ReplaceUUIandCDwithOCIInfo
	Tag
	TServers
	TraceActivity
	PollingSpeedAgentInfo
	PollingSpeedFeatures
	PrivateVersion
	QueryACDStatus
	StripCLIRestrictionIndicator
	TrunkIDReplacementString
	UpdateAgentStateOnCallClear

	Appendix A - Special Dial Characters
	Alphanumeric Characters
	Post-Dial DTMF
	User-to-User Information
	User-to-User Information & Post-Dial DTMF Digits

	Appendix B - PhoneX Dial Control
	Version Numbers
	PhoneX Status Dump
	PhoneX Tracing
	Disable Special Dial Sequence

	Index

